Skip to main content
Log in

An arc-search infeasible interior-point method for semidefinite optimization with the negative infinity neighborhood

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We present an arc-search infeasible interior-point algorithm for semidefinite optimization using the Nesterov-Todd search directions. The algorithm is based on the negative infinity neighborhood of the central path. The algorithm searches an ε-approximate solution of the problem along the ellipsoidal approximation of the entire central path. The convergence analysis of the algorithm is presented and shows that the algorithm has the iteration complexity bound \(\mathcal {O}\big (n^{3/2}\log {\varepsilon }^{-1}\big )\). Here, n is the dimension of the problem and ε is the required precision. The numerical results show that our algorithm is efficient and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ai, W., Zhang, S.: An \(o(\sqrt {n}L)\) iteration primal-dual path-following method, based on wide neighborhoods and large updates, for monotone LCP. SAIM J. Optim. 16(2), 400–417 (2005)

    Article  MathSciNet  Google Scholar 

  2. Alizadeh, F.: Combinatorial optimizationwith interior-point methods and semi-definite matrices. Ph.D.thesis, Computer Science Department, University of Minnesota Minneapolis (1991)

  3. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5(1), 13–51 (1995)

    Article  MathSciNet  Google Scholar 

  4. Borchers, B.: Sdplib 1.2, a library of semidefinite programming test problems. Optim. Methods Softw. 11, 683–690 (1999)

    Article  MathSciNet  Google Scholar 

  5. Boyd, S. E., Ghaoui, L.El., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM studies in Applied Mathematics, SIAM, Philadelphia (1994)

  6. de Klerk, E.: Aspects of Semidefinite Programming. Kluwer Academic, Dordrecht (2002)

    Book  Google Scholar 

  7. Dolan, E. D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  8. Halicka, M., de Klerk, E., Roos, C.: On the convergence of the central path in semidefinite optimization. SIAM J. Optim. 12(4), 1090–1099 (2002)

    Article  MathSciNet  Google Scholar 

  9. Helmberg, C., Rendl, F., Vanderbei, R., Wolkowicz, H.: An interiorpoint method for semidefinite programming. SIAM J. Optim. 6(2), 342–361 (1996)

    Article  MathSciNet  Google Scholar 

  10. Jansen, B., Roos, C., Terlaky, T.: Improved complexity using higher-order correctors for primal-dual Dikin affine scaling. Math. Program. 76(1), 117–130 (1997)

    Article  MathSciNet  Google Scholar 

  11. Kheirfam, B.: An arc-search interior point method in the \(N^{-}_{\infty }\) neighborhood for symmetric optimization. Fundam. Inform. 146(3), 255–269 (2016)

    Article  MathSciNet  Google Scholar 

  12. Kheirfam, B.: An arc-search infeasible interior point algorithm for HLCP in the \(\mathcal {N}^{-}_{\infty }\) neighborhood of the central path. Int. J. Comput. Math. 94(12), 2271–2282 (2017)

    Article  MathSciNet  Google Scholar 

  13. Kheirfam, B., Moslemi, M.: On the extend of an arc-search interior-point algorithm for semidefinite optimization. Numer. Algebra Control Optim. 8(2), 261–275 (2018)

    Article  MathSciNet  Google Scholar 

  14. Kojima, M., Shindoh, S., Hara, S.: Interior-pointmethods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7(1), 86–125 (1997)

    Article  MathSciNet  Google Scholar 

  15. Lasserre, J. B.: Globle optimization with polynomials and the problems of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  Google Scholar 

  16. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)

    Article  MathSciNet  Google Scholar 

  17. Monteiro, R. D. C.: Primal-dual path-following algorithms for semidefenite programming. SIAM J. Optim. 7(3), 663–678 (1997)

    Article  MathSciNet  Google Scholar 

  18. Monteiro, R. D. C.: Polynomial convergence of primal-dual algorithms for semidefnite programming based on Monteiro and Zhang family of directions. SIAM J. Optim. 8(3), 797–812 (1998)

    Article  MathSciNet  Google Scholar 

  19. Monteiro, R. D. C.: First- and second-order methods for semidefnite programming. Math. Program. 97(12), 209–244 (2003)

    Article  MathSciNet  Google Scholar 

  20. Monteiro, R. D. C., Zhang, Y.: A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming. Math. Program. 81(3), 281–299 (1998)

    Article  MathSciNet  Google Scholar 

  21. Nesterov, Y. E., Nemirovsk, A. S.: Interior point methods in convex programming: theory and applications. SIAM, Philadelphia (1994)

  22. Nesterov, Y. E., Todd, M. J.: Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res. 22(1), 1–42 (1997)

    Article  MathSciNet  Google Scholar 

  23. Nesterov, Y. E., Todd, M. J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8(2), 324–364 (1998)

    Article  MathSciNet  Google Scholar 

  24. Toh, K. C., Todd, M. J., Tutuncu, R. H.: SDPT3–A Matlab software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  25. Wang, W., Liu, H., Bi, H.: A modified infeasible interior-point algorithm with full-Newton step for semidefinite optimization. Int. J. Comput. Math. 96(10), 1979–1992 (2018)

    Article  MathSciNet  Google Scholar 

  26. Parrilo, P. A.: Semidefinite optimization relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)

    Article  MathSciNet  Google Scholar 

  27. Yamashita, M., Fujisawa, K., Fukuda, M., Kobayashi, K., Nakata, K., Nakata, M.: Latest developments in the SDPA family for solving large-scale SDPs. In: Handbook on semidefinite, conic and polynomial optimization, pp. 687–713 (2012)

  28. Yang, Y.: A polynomial arc-search interior-point algorithm for convex quadratic programming. Eur. J. Oper. Res. 215(1), 25–38 (2011)

    Article  MathSciNet  Google Scholar 

  29. Yang, Y.: A polynomial arc-search interior-point algorithm for linear programming. J. Optim. Theory Appl. 158(3), 859–873 (2013)

    Article  MathSciNet  Google Scholar 

  30. Yang, Y.: Two computationally efficient polynomial-iteration infeasible interior-point algorithms for linear programming. Numer. Algorithm. 79(3), 957–992 (2018)

    Article  MathSciNet  Google Scholar 

  31. Yang, X., Zhang, Y., Liu, H.: A wide neighborhood infeasible-interior-point method with arc-search for linear programming. J. Appl. Math. Comput. 51, 209–225 (2016)

    Article  MathSciNet  Google Scholar 

  32. Yang, X., Liu, H., Zhang, Y.: An arc-search infeasible-interior-point method for symmetric optimization in a wide neighborhood of the central path. Optim. Lett. 11, 135–152 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Y.: On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM J. Optim. 8, 365–386 (1998)

    Article  MathSciNet  Google Scholar 

  34. Zhang, M., Yuan, B., Zhou, Y., Luo, X., Huang, Z.h.: A primal-dual interior-point algorithm with arc-search for semidefinite programming. Optim. Lett. 13(5), 1157–1175 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous referees and editor for their useful comments that help us improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Kheirfam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we describe the details of the test problems in Section 4 [24].

  1. 1.

    Max-cut problem (Mc):

    $$ \begin{array}{@{}rcl@{}} \begin{array}{ccc} & \multicolumn{2}{l}{ \min~\text{Tr}(LX )} \\ \qquad \qquad&& s.t.~~ \text{diag}(X)=\frac{e}{4} \quad\\ \qquad \qquad\qquad&& X\succeq 0, \quad \end{array} \end{array} $$

    where L = B −Diag(Be) and B is the weighted adjacency matrix of a graph [9] and e is a vector of all ones.

  2. 2.

    Norm-min problem (NM):

    $$ \min_{x\in\mathbb{R}^{m}} \big\|B_{0}+x_{1}B_{1}+\cdots+x_{m}B_{m}\big\|_{2}, $$

    where Bk, for k = 0, 1,⋯ ,m is an p × q matrix. For this problem, we consider p = q = n and randomly generate the matrices as Bk = rand(n) for k = 0, 1,⋯ ,m.

  3. 3.

    Control problem(C):

    $$ \begin{array}{@{}rcl@{}} \begin{array}{ccc} & \multicolumn{2}{l}{ \max_{(P,t)} t} \\ \qquad \qquad&& s.t.~ -\text{Tr}((B_{k})^{T} P)-\text{Tr}(P(B_{k}))\succeq 0\quad k=1, \cdots, L \\ \qquad \qquad&& I-P\succeq 0, \ P-tI\succeq 0,\ P=P^{T},~~~~~~~ \end{array} \end{array} $$

    where Bk, for k = 0, 1,⋯ ,L, are the square real matrices n dimension. For this problem, we generate the matrices as Bk = rand(n), for k = 0, 1,⋯ ,m.

  4. 4.

    Graph partitioning problem (Gp):

    $$ \begin{array}{ccc} & \multicolumn{2}{l}{ \min~\text{Tr}(CX)} \\ \qquad \qquad&& s.t.~\text{Tr}((ee^{T})X)=1~~~~~~~~~~~~~~~~ \\ \qquad \qquad&& X_{ii}=1\quad i=1, \cdots, n. \end{array} $$

    where C = −(diag(Be) − B) and B is the weighted adjacency matrix of a graph with n nodes [9] and e is a vector of all ones.

  5. 5.

    Lovasz theta number problem (Ltn):

    $$ \begin{array}{ccc} & \multicolumn{2}{l}{\min~\text{Tr}(CX)} \\ \qquad \qquad&& s.t.~\text{Tr}(X)=1~~~~~~~~~~~~~~~~~~~~~ \\ \qquad \qquad&& ~~~~ \text{Tr}(A_{ij}X)=0\quad (i, j)\in E\\ \qquad \qquad&& X\succeq 0. \end{array} $$

    where:

    • C is a matrix of all minus ones.

    • B is the adjacency matrix of the given graph [9].

    • E is the set of edges of the given graph.

    • \(A_{ij}=(e_{i}{e_{j}^{T}}+e_{j}{e_{i}^{T}})/\sqrt {2}\).

    • ei denotes the i th column of B.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheirfam, B., Osmanpour, N. & Keyanpour, M. An arc-search infeasible interior-point method for semidefinite optimization with the negative infinity neighborhood. Numer Algor 88, 143–163 (2021). https://doi.org/10.1007/s11075-020-01033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01033-1

Keywords

Mathematics subject classification (2010)

Navigation