Skip to main content

Advertisement

Log in

Antagonism of Protease-Activated Receptor 4 Protects Against Traumatic Brain Injury by Suppressing Neuroinflammation via Inhibition of Tab2/NF-κB Signaling

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) triggers the activation of the endogenous coagulation mechanism, and a large amount of thrombin is released to curb uncontrollable bleeding through thrombin receptors, also known as protease-activated receptors (PARs). However, thrombin is one of the most critical factors in secondary brain injury. Thus, the PARs may be effective targets against hemorrhagic brain injury. Since the PAR1 antagonist has an increased bleeding risk in clinical practice, PAR4 blockade has been suggested as a more promising treatment. Here, we explored the expression pattern of PAR4 in the brain of mice after TBI, and explored the effect and possible mechanism of BMS-986120 (BMS), a novel selective and reversible PAR4 antagonist on secondary brain injury. Treatment with BMS protected against TBI in mice. mRNA-seq analysis, Western blot, and qRT-PCR verification in vitro showed that BMS significantly inhibited thrombin-induced inflammation in astrocytes, and suggested that the Tab2/ERK/NF-κB signaling pathway plays a key role in this process. Our findings provide reliable evidence that blocking PAR4 is a safe and effective intervention for TBI, and suggest that BMS has a potential clinical application in the management of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ng SY, Lee AYW. Traumatic brain injuries: Pathophysiology and potential therapeutic targets. Front Cell Neurosci 2019, 13: 528.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Han RZ, Hu JJ, Weng YC, Li DF, Huang Y. NMDA receptor antagonist MK-801 reduces neuronal damage and preserves learning and memory in a rat model of traumatic brain injury. Neurosci Bull 2009, 25: 367–375.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. DePalma RG. Combat TBI: History, epidemiology, and injury modes. In: Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Frontiers in Neuroengineering. Boca Raton (FL): CRC Press/Taylor & Francis, 2015, Chapter 2.

  4. Kong XD, Bai S, Chen X, Wei HJ, Jin WN, Li MS, et al. Alterations of natural killer cells in traumatic brain injury. Neurosci Bull 2014, 30: 903–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu J, He J, Tian X, Zhong J, Li H, Sun X. Activation of the hedgehog pathway promotes recovery of neurological function after traumatic brain injury by protecting the neurovascular unit. Transl Stroke Res 2020, 11: 720–733.

    PubMed  Google Scholar 

  6. Johnson VE, Weber MT, Xiao R, Cullen DK, Meaney DF, Stewart W, et al. Mechanical disruption of the blood-brain barrier following experimental concussion. Acta Neuropathol 2018, 135: 711–726.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Clark RS, Bayir H, Chu CT, Alber SM, Kochanek PM, Watkins SC. Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy 2008, 4: 88–90.

    CAS  PubMed  Google Scholar 

  8. Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM. The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. Acta Neuropathol 2019, 137: 731–755.

    PubMed  Google Scholar 

  9. Wu H, Shao A, Zhao M, Chen S, Yu J, Zhou J, et al. Melatonin attenuates neuronal apoptosis through up-regulation of K+ -Cl- cotransporter KCC2 expression following traumatic brain injury in rats. J Pineal Res 2016, 61: 241–250.

    CAS  PubMed  Google Scholar 

  10. Zhang YB, Li SX, Chen XP, Yang L, Zhang YG, Liu R, et al. Autophagy is activated and might protect neurons from degeneration after traumatic brain injury. Neurosci Bull 2008, 24: 143–149.

    PubMed  PubMed Central  Google Scholar 

  11. Luaute J, Plantier D, Wiart L, Tell L. Care management of the agitation or aggressiveness crisis in patients with TBI. Systematic review of the literature and practice recommendations. Ann Phys Rehabil Med 2016, 59: 58–67.

  12. Lindblad C, Thelin EP, Nekludov M, Frostell A, Nelson DW, Svensson M, et al. Assessment of platelet function in traumatic brain injury-A retrospective observational study in the neuro-critical care setting. Front Neurol 2018, 9: 15.

    PubMed  PubMed Central  Google Scholar 

  13. Li YJ, Chang GQ, Liu Y, Gong Y, Yang C, Wood K, et al. Fingolimod alters inflammatory mediators and vascular permeability in intracerebral hemorrhage. Neurosci Bull 2015, 31: 755–762.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Derian CK, Damiano BP, Addo MF, Darrow AL, D’Andrea MR, Nedelman M, et al. Blockade of the thrombin receptor protease-activated receptor-1 with a small-molecule antagonist prevents thrombus formation and vascular occlusion in nonhuman primates. J Pharmacol Exp Ther 2003, 304: 855–861.

    CAS  PubMed  Google Scholar 

  15. Lin H, Liu AP, Smith TH, Trejo J. Cofactoring and dimerization of proteinase-activated receptors. Pharmacol Rev 2013, 65: 1198–1213.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chiu PJ, Tetzloff GG, Foster C, Chintala M, Sybertz EJ. Characterization of in vitro and in vivo platelet responses to thrombin and thrombin receptor-activating peptides in guinea pigs. Eur J Pharmacol 1997, 321: 129–135.

    CAS  PubMed  Google Scholar 

  17. Connolly TM, Condra C, Feng DM, Cook JJ, Stranieri MT, Reilly CF, et al. Species variability in platelet and other cellular responsiveness to thrombin receptor-derived peptides. Thromb Haemost 1994, 72: 627–633.

    CAS  PubMed  Google Scholar 

  18. Hamilton JR, Cornelissen I, Coughlin SR. Impaired hemostasis and protection against thrombosis in protease-activated receptor 4-deficient mice is due to lack of thrombin signaling in platelets. J Thromb Haemost 2004, 2: 1429–1435.

    CAS  PubMed  Google Scholar 

  19. Petzold T, Thienel M, Dannenberg LK, Mourikis P, Helten C, Ayhan A, et al. Rivaroxaban reduces arterial thrombosis by inhibition of FXa driven platelet activation via protease activated receptor-1. Circ Res 2020,126: 486–500.

    CAS  PubMed  Google Scholar 

  20. Thibeault PE, LeSarge JC, Arends D, Fernandes M, Chidiac P, Stathopulos PB, et al. Molecular basis for activation and biased signalling at the thrombin-activated GPCR proteinase activated receptor-4 (PAR4). J Biol Chem 2020, 295: 2520–2540.

    CAS  PubMed  Google Scholar 

  21. Xu H, Zou X, Xia P, Aboudi MAK, Chen R, Huang H. Differential effects of platelets selectively activated by protease-activated receptors on meniscal cells. Am J Sports Med 2020, 48: 197–209.

    PubMed  Google Scholar 

  22. Patel YM, Lordkipanidze M, Lowe GC, Nisar SP, Garner K, Stockley J, et al. A novel mutation in the P2Y12 receptor and a function-reducing polymorphism in protease-activated receptor 1 in a patient with chronic bleeding. J Thromb Haemost 2014, 12: 716–725.

    CAS  PubMed  Google Scholar 

  23. Lee M, Saver JL, Hong KS, Wu HC, Ovbiagele B. Risk of intracranial hemorrhage with protease-activated receptor-1 antagonists. Stroke 2012, 43: 3189–3195.

    CAS  PubMed  Google Scholar 

  24. Mao Y, Zhang M, Tuma RF, Kunapuli SP. Deficiency of PAR4 attenuates cerebral ischemia/reperfusion injury in mice. J Cereb Blood Flow Metab 2010, 30: 1044–1052.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wong PC, Seiffert D, Bird JE, Watson CA, Bostwick JS, Giancarli M, et al. Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding. Sci Transl Med 2017, 9.

  26. Romine J, Gao X, Chen J. Controlled cortical impact model for traumatic brain injury. J Vis Exp 2014: e51781.

  27. Sinz EH, Kochanek PM, Dixon CE, Clark RS, Carcillo JA, Schiding JK, et al. Inducible nitric oxide synthase is an endogenous neuroprotectant after traumatic brain injury in rats and mice. J Clin Invest 1999, 104: 647–656.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang L, Wang F, Yang L, Yuan Y, Chen Y, Zhang G, et al. HMGB1 a-box reverses brain edema and deterioration of neurological function in a traumatic brain injury mouse model. Cell Physiol Biochem 2018, 46: 2532–2542.

    CAS  PubMed  Google Scholar 

  29. An C, Jiang X, Pu H, Hong D, Zhang W, Hu X, et al. Severity-dependent long-term spatial learning-memory impairment in a mouse model of traumatic brain injury. Transl Stroke Res 2016, 7: 512–520.

    PubMed  Google Scholar 

  30. He J, Liu H, Zhong J, Guo Z, Wu J, Zhang H, et al. Bexarotene protects against neurotoxicity partially through a PPARγ-dependent mechanism in mice following traumatic brain injury. Neurobiol Dis 2018, 117: 114–124.

    CAS  PubMed  Google Scholar 

  31. Alluri H, Shaji CA, Davis ML, Tharakan B. A mouse controlled cortical impact model of traumatic brain injury for studying blood-brain barrier dysfunctions. Methods Mol Biol 2018, 1717: 37–52.

    CAS  PubMed  Google Scholar 

  32. Siebold L, Obenaus A, Goyal R. Criteria to define mild, moderate, and severe traumatic brain injury in the mouse controlled cortical impact model. Exp Neurol 2018, 310: 48–57.

    PubMed  Google Scholar 

  33. Yuan J, Zhang J, Cao J, Wang G, Bai H. Geniposide alleviates traumatic brain injury in rats via anti-inflammatory effect and MAPK/NF-kB inhibition. Cell Mol Neurobiol 2020, 40: 511–520.

    PubMed  Google Scholar 

  34. Wu K, Huang D, Zhu C, Kasanga EA, Zhang Y, Yu E, et al. NT3(P75-2) gene-modified bone mesenchymal stem cells improve neurological function recovery in mouse TBI model. Stem Cell Res Ther 2019, 10: 311.

    PubMed  PubMed Central  Google Scholar 

  35. Xi Y, Feng D, Tao K, Wang R, Shi Y, Qin H, et al. MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1alpha. Biochim Biophys Acta Mol Basis Dis 2018, 1864: 2859–2870.

    CAS  PubMed  Google Scholar 

  36. Piao CS, Holloway AL, Hong-Routson S, Wainwright MS. Depression following traumatic brain injury in mice is associated with down-regulation of hippocampal astrocyte glutamate transporters by thrombin. J Cereb Blood Flow Metab 2019, 39: 58–73.

    CAS  PubMed  Google Scholar 

  37. Wilson SJ, Ismat FA, Wang Z, Cerra M, Narayan H, Raftis J, et al. PAR4 (Protease-Activated Receptor 4) antagonism with BMS-986120 inhibits human ex vivo thrombus formation. Arterioscler Thromb Vasc Biol 2018, 38: 448–456.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ius T, Ciani Y, Ruaro ME, Isola M, Sorrentino M, Bulfoni M, et al. An NF-kappaB signature predicts low-grade glioma prognosis: a precision medicine approach based on patient-derived stem cells. Neuro Oncol 2018, 20: 776–787.

    CAS  PubMed  Google Scholar 

  39. Chen L, Liu X, Wang H, Qu M. Gastrodin attenuates pentylenetetrazole-induced seizures by modulating the mitogen-activated protein kinase-associated inflammatory responses in mice. Neurosci Bull 2017, 33: 264–272.

    CAS  PubMed  Google Scholar 

  40. Chu W, Li M, Li F, Hu R, Chen Z, Lin J, et al. Immediate splenectomy down-regulates the MAPK-NF-kappaB signaling pathway in rat brain after severe traumatic brain injury. J Trauma Acute Care Surg 2013, 74: 1446–1453.

    CAS  PubMed  Google Scholar 

  41. Zhang Q, Wang J, Duan MT, Han SP, Zeng XY, Wang JY. NF-kappaB, ERK, p38 MAPK and JNK contribute to the initiation and/or maintenance of mechanical allodynia induced by tumor necrosis factor-alpha in the red nucleus. Brain Res Bull 2013, 99: 132–139.

    CAS  PubMed  Google Scholar 

  42. Bai L, Wang X, Li Z, Kong C, Zhao Y, Qian JL, et al. Upregulation of chemokine CXCL12 in the dorsal root ganglia and spinal cord contributes to the development and maintenance of neuropathic pain following spared nerve injury in rats. Neurosci Bull 2016, 32: 27–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Deng P, Zhou C, Alvarez R, Hong C, Wang CY. Inhibition of IKK/NF-kappaB signaling enhances differentiation of mesenchymal stromal cells from human embryonic stem cells. Stem Cell Reports 2016, 6: 456–465.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Patricio ES, Costa R, Figueiredo CP, Gers-Barlag K, Bicca MA, Manjavachi MN, et al. Mechanisms underlying the scratching behavior induced by the activation of proteinase-activated receptor-4 in mice. J Invest Dermatol 2015, 135: 2484–2491.

    CAS  PubMed  Google Scholar 

  45. Moschonas IC, Kellici TF, Mavromoustakos T, Stathopoulos P, Tsikaris V, Magafa V, et al. Molecular requirements involving the human platelet protease-activated receptor-4 mechanism of activation by peptide analogues of its tethered-ligand. Platelets 2017, 28: 812–821.

    CAS  PubMed  Google Scholar 

  46. Wen W, Young SE, Duvernay MT, Schulte ML, Nance KD, Melancon BJ, et al. Substituted indoles as selective protease activated receptor 4 (PAR-4) antagonists: Discovery and SAR of ML354. Bioorg Med Chem Lett 2014, 24: 4708–4713.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zeng KW, Yu Q, Liao LX, Song FJ, Lv HN, Jiang Y, et al. Anti-neuroinflammatory effect of MC13, a novel coumarin compound from condiment murraya, through inhibiting lipopolysaccharide-induced TRAF6-TAK1-NF-kappaB, P38/ERK MAPKS and Jak2-Stat1/Stat3 pathways. J Cell Biochem 2015, 116: 1286–1299.

    CAS  PubMed  Google Scholar 

  48. Chen P, Ren S, Song H, Chen C, Chen F, Xu Q, et al. Synthesis and biological evaluation of BMS-986120 and its deuterated derivatives as PAR4 antagonists. Bioorg Med Chem 2019, 27: 116–124.

    CAS  PubMed  Google Scholar 

  49. Liu KL, Yang YC, Yao HT, Chia TW, Lu CY, Li CC, et al. Docosahexaenoic acid inhibits inflammation via free fatty acid receptor FFA4, disruption of TAB2 interaction with TAK1/TAB1 and downregulation of ERK-dependent Egr-1 expression in EA.hy926 cells. Mol Nutr Food Res 2016, 60: 430–443.

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81630027, 81571215), and the Chang Jiang Scholar Program of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guodong Gao or Yan Qu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Wu, X., Liu, H. et al. Antagonism of Protease-Activated Receptor 4 Protects Against Traumatic Brain Injury by Suppressing Neuroinflammation via Inhibition of Tab2/NF-κB Signaling. Neurosci. Bull. 37, 242–254 (2021). https://doi.org/10.1007/s12264-020-00601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00601-8

Keywords

Navigation