Skip to main content

Advertisement

Log in

In Vivo Evaluation and Dosimetry Estimate for a High Affinity Affibody PET Tracer Targeting PD-L1

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

In vivo imaging of programmed death ligand 1 (PD-L1) during immunotherapy could potentially monitor changing PD-L1 expression and PD-L1 expression heterogeneity within and across tumors. Some protein constructs can be used for same-day positron emission tomography (PET) imaging. Previously, we evaluated the PD-L1-targeting Affibody molecule [18F]AlF-NOTA-ZPD-L1_1 as a PET tracer in a mouse tumor model of human PD-L1 expression. In this study, we evaluated the affinity-matured Affibody molecule ZPD-L1_4, to determine if improved affinity for PD-L1 resulted in increased in vivo targeting of PD-L1.

Procedures

ZPD-L1_4 was conjugated with NOTA and radiolabeled with either [18F]AlF or 68Ga. [18F]AlF-NOTA-ZPD-L1_4 and [68Ga]NOTA-ZPD-L1_4 were evaluated in immunocompromised mice with LOX (PD-L1+) and SUDHL6 (PD-L1-) tumors with PET and ex vivo biodistribution measurements. In addition, whole-body PET studies were performed in rhesus monkeys to predict human biodistribution in a model with tracer binding to endogenous PD-L1, and to calculate absorbed radiation doses.

Results

Ex vivo biodistribution measurements showed that both tracers had > 25 fold higher accumulation in LOX tumors than SUDHL6 ([18F]AlF-NOTA-ZPD-L1_4: LOX: 8.7 ± 0.7 %ID/g (N = 4) SUDHL6: 0.2 ± 0.01 %ID/g (N = 6), [68Ga]NOTA-ZPD-L1_4: LOX: 15.8 ± 1.0 %ID/g (N = 6) SUDHL6: 0.6 ± 0.1 %ID/g (N = 6)), considerably higher than ZPD-L1_1. In rhesus monkeys, both PET tracers showed fast clearance through kidneys and low background signal in the liver ([18F]AlF-NOTA-ZPD-L1_4: 1.26 ± 0.13 SUV, [68Ga]NOTA-ZPD-L1_4: 1.11 ± 0.06 SUV). PD-L1-expressing lymph nodes were visible in PET images, indicating in vivo PD-L1 targeting. Dosimetry estimates suggest that both PET tracers can be used for repeated clinical studies, although high kidney accumulation may limit allowable radioactive doses.

Conclusions

[18F]AlF-NOTA-ZPD-L1_4 and [68Ga]NOTA-ZPD-L1_4 are promising candidates for same-day clinical PD-L1 PET imaging, warranting clinical evaluation. The ability to use either [18F] or [68Ga] may expand access to clinical sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4):450–461

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB (2012) and others. Safety, activity, and immune correlates of anti–PD-1 antibody in Cancer. N Engl J Med 366(26):2443–2454

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L (2015) and others. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    PubMed  Google Scholar 

  5. Langer CJ, Gadgeel SM, Borghaei H, Papadimitrakopoulou VA, Patnaik A, Powell SF, Gentzler RD, Martins RG, Stevenson JP, Jalal SI (2016) and others. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 17(11):1497–1508

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS et al (2015) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413

    Google Scholar 

  7. Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, Heath K, McClanahan T, Lunceford J, Gause C et al (2016) Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 17(7):956–965

    CAS  PubMed  Google Scholar 

  8. Vokes EE, Ready N, Felip E, Horn L, Burgio MA, Antonia SJ, Aren Frontera O, Gettinger S, Holgado E, Spigel D et al (2018) Nivolumab versus docetaxel in previously treated advanced non-small-cell lung cancer (CheckMate 017 and CheckMate 057): 3-year update and outcomes in patients with liver metastases. Ann Oncol 29(4):959–965

    CAS  PubMed  Google Scholar 

  9. Akin Telli T, Bregni G, Camera S, Deleporte A, Hendlisz A, Sclafani F (2020) PD-1 and PD-L1 inhibitors in oesophago-gastric cancers. Cancer Lett 469:142–150

    CAS  PubMed  Google Scholar 

  10. Wang Y, Li G (2019) PD-1/PD-L1 blockade in cervical cancer: current studies and perspectives. Front Med 13(4):438–450

    PubMed  Google Scholar 

  11. Abou Alaiwi S, Xie W, Nassar AH, Dudani S, Martini D, Bakouny Z, Steinharter JA, Nuzzo PV, Flippot R, Martinez-Chanza N et al (2020) Safety and efficacy of restarting immune checkpoint inhibitors after clinically significant immune-related adverse events in metastatic renal cell carcinoma. J Immunother Cancer 8(1)

  12. Balar AV, Castellano D, O'Donnell PH, Grivas P, Vuky J, Powles T, Plimack ER, Hahn NM, de Wit R, Pang L (2017) and others. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol 18(11):1483–1492

    CAS  PubMed  Google Scholar 

  13. Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, Shanafelt TD, Sinha S, Le-Rademacher J, Feldman AL (2017) and others. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood 129(26):3419–3427

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833

    CAS  PubMed  Google Scholar 

  15. Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X, Wu K (2018) Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer 17(1):129

    PubMed  PubMed Central  Google Scholar 

  16. Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN (2014) and others. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hersom M, Jorgensen JT (2018) Companion and complementary diagnostics-focus on PD-L1 expression assays for PD-1/PD-L1 checkpoint inhibitors in non-small cell lung cancer. Ther Drug Monit 40(1):9–16

    CAS  PubMed  Google Scholar 

  18. Patel SP, Kurzrock R (2015) PD-L1 Expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14(4):847–856

    CAS  PubMed  Google Scholar 

  19. McLaughlin J, Han G, Schalper KA et al (2016) Quantitative assessment of the heterogeneity of PD-L1 expression in non–small-cell lung cancer. JAMA Oncol 2(1):46–54

    PubMed  PubMed Central  Google Scholar 

  20. Mansfield AS, Murphy SJ, Peikert T, Yi ES, Vasmatzis G, Wigle DA, Aubry MC (2016) Heterogeneity of programmed cell death ligand 1 expression in multifocal lung cancer. Clin Cancer Res 22(9):2177–2182

    CAS  PubMed  Google Scholar 

  21. Dill EA, Gru AA, Atkins KA, Friedman LA, Moore ME, Bullock TN, Cross JV, Dillon PM, Mills AM (2017) PD-L1 Expression and intratumoral heterogeneity across breast cancer subtypes and stages: an assessment of 245 primary and 40 metastatic tumors. Am J Surg Pathol 41(3):334–342

    PubMed  Google Scholar 

  22. Madore J, Vilain RE, Menzies AM, Kakavand H, Wilmott JS, Hyman J, Yearley JH, Kefford RF, Thompson JF, Long GV et al (2015) PD-L1 expression in melanoma shows marked heterogeneity within and between patients: implications for anti-PD-1/PD-L1 clinical trials. Pigment Cell Melanoma Res 28(3):245–253

    CAS  PubMed  Google Scholar 

  23. Ilie M, Long-Mira E, Bence C, Butori C, Lassalle S, Bouhlel L, Fazzalari L, Zahaf K, Lalvée S, Washetine K et al (2016) Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: a potential issue for anti-PD-L1 therapeutic strategies. Ann Oncol 27(1):147–153

    CAS  PubMed  Google Scholar 

  24. Messenheimer DJ, Jensen SM, Afentoulis ME, Wegmann KW, Feng Z, Friedman DJ, Gough MJ, Urba WJ, Fox BA (2017) Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clin Cancer Res 23(20):6165–6177

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hettich M, Braun F, Bartholom Ã, Schirmbeck R, Niedermann G (2016) High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics 6(10):1629–1640

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lesniak WG, Chatterjee S, Gabrielson M, Lisok A, Wharram B, Pomper MG, Nimmagadda S (2016) PD-L1 detection in tumors using [64Cu] atezolizumab with PET. Bioconjug Chem 27(9):2103–2110

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ehlerding EB, Lee HJ, Barnhart TE, Jiang D, Kang L, McNeel DG, Engle JW, Cai W (2019) Noninvasive imaging and quantification of radiotherapy-induced PD-L1 upregulation with (89)Zr-Df-atezolizumab. Bioconjug Chem 30(5):1434–1441

    CAS  PubMed  PubMed Central  Google Scholar 

  28. England CG, Ehlerding EB, Hernandez R, Rekoske BT, Graves SA, Sun H, Liu G, McNeel DG, Barnhart TE, Cai W (2017) Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med 58(1):162–168

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kikuchi M, Clump DA, Srivastava RM, Sun L, Zeng D, Diaz-Perez JA, Anderson CJ, Edwards WB, Ferris RL (2017) Preclinical immunoPET/CT imaging using Zr-89-labeled anti-PD-L1 monoclonal antibody for assessing radiation-induced PD-L1 upregulation in head and neck cancer and melanoma. Oncoimmunology 6(7):e1329071

    PubMed  PubMed Central  Google Scholar 

  30. Natarajan A, Mayer AT, Reeves RE, Nagamine CM, Gambhir SS (2017) Development of novel ImmunoPET tracers to image human PD-1 checkpoint expression on tumor-infiltrating lymphocytes in a humanized mouse model. Mol Imaging Biol 19(6):903–914

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Natarajan A, Mayer AT, Xu L, Reeves RE, Gano J, Gambhir SS (2015) Novel radiotracer for ImmunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem 26(10):2062–2069

    CAS  PubMed  Google Scholar 

  32. Natarajan A, Patel CB, Habte F, Gambhir SS (2018) Dosimetry prediction for clinical translation of (64)Cu-pembrolizumab immunoPET targeting human PD-1 expression. Sci Rep 8(1):633

    PubMed  PubMed Central  Google Scholar 

  33. Truillet C, Oh HLJ, Yeo SP, Lee CY, Huynh LT, Wei J, Parker MFL, Blakely C, Sevillano N, Wang YH (2018) and others. Imaging PD-L1 expression with ImmunoPET. Bioconjug Chem 29(1):96–103

    CAS  PubMed  Google Scholar 

  34. Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, Oosting SF, Schroder CP, Hiltermann TJN, van der Wekken AJ et al (2018) (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 24(12):1852–1858

    CAS  PubMed  Google Scholar 

  35. Jagoda EM, Vasalatiy O, Basuli F, Opina ACL, Williams MR, Wong K, Lane KC, Adler S, Ton AT, Szajek LP et al (2019) Immuno-PET imaging of the programmed cell death-1 ligand (PD-L1) using a zirconium-89 labeled therapeutic antibody, avelumab. Mol Imaging 18:1536012119829986

    PubMed  PubMed Central  Google Scholar 

  36. Vento J, Mulgaonkar A, Woolford L, Nham K, Christie A, Bagrodia A, de Leon AD, Hannan R, Bowman I, McKay RM et al (2019) PD-L1 detection using (89)Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. J Immunother Cancer 7(1):144

    PubMed  PubMed Central  Google Scholar 

  37. Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen G, Boellaard R, Du S, Hayes W, Smith R et al (2018) Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun 9(1):4664

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao Y, Jusko WJ (2014) Survey of monoclonal antibody disposition in man utilizing a minimal physiologically-based pharmacokinetic model. J Pharmacokinet Pharmacodyn 41(6):571–580

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mould DR, Sweeney KR (2007) The pharmacokinetics and pharmacodynamics of monoclonal antibodies--mechanistic modeling applied to drug development. Curr Opin Drug Discov Dev 10(1):84–96

    CAS  Google Scholar 

  40. Wester HJ, Kessler H (2005) Molecular targeting with peptides or peptide-polymer conjugates: just a question of size? J Nucl Med 46(12):1940–1945

    CAS  PubMed  Google Scholar 

  41. Maute RL, Gordon SR, Mayer AT, McCracken MN, Natarajan A, Ring NG, Kimura R, Tsai JM, Manglik A, Kruse AC (2015) and others. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci U S A 112(47):E6506–E6514

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chatterjee S, Lesniak WG, Miller MS, Lisok A, Sikorska E, Wharram B, Kumar D, Gabrielson M, Pomper MG, Gabelli SB et al (2017) Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem Biophys Res Commun 483(1):258–263

    CAS  PubMed  Google Scholar 

  43. Donnelly DJ, Smith RA, Morin P, Lipovšek D, Gokemeijer Jochem, Cohen D, Lafont V, Tran T, Cole EL, Wright M et al (2018) Synthesis and biological evaluation of a novel 18F-labeled Adnectin as a PET Radioligand for Imaging PD-L1 expression. J Nucl Med 59:529–535

    CAS  PubMed  Google Scholar 

  44. Ingram JR, Dougan M, Rashidian M, Knoll M, Keliher EJ, Garrett S, Garforth S, Blomberg OS, Espinosa C, Bhan A (2017) and others. PD-L1 is an activation-independent marker of brown adipocytes. Nat Commun 8(647):1–10

    CAS  Google Scholar 

  45. Mayer AT, Natarajan A, Gordon SR, Maute RL, McCracken MN, Ring AM, Weissman IL, Gambhir SS (2017) Practical immuno-PET radiotracer design considerations for human immune checkpoint imaging. J Nucl Med 58(4):538–546

    CAS  PubMed  PubMed Central  Google Scholar 

  46. González Trotter DE, Meng X, McQuade P, Rubins D, Klimas M, Zeng Z, Connolly BM, Miller PJ, O’Malley SS, Lin S-A (2017) and others. In vivo imaging of the programmed death ligand 1 by 18F PET. J Nucl Med 58(11):1852–1857

    PubMed  Google Scholar 

  47. De Silva RA, Kumar D, Lisok A, Chatterjee S, Wharram B, Venkateswara Rao K, Mease R, Dannals RF, Pomper MG, Nimmagadda S (2018) Peptide-based (68)Ga-PET radiotracer for imaging PD-L1 expression in cancer. Mol Pharm 15(9):3946–3952

    PubMed  PubMed Central  Google Scholar 

  48. Li D, Cheng S, Zou S, Zhu D, Zhu T, Wang P, Zhu X (2018) Immuno-PET imaging of (89)Zr labeled anti-PD-L1 domain antibody. Mol Pharm 15(4):1674–1681

    CAS  PubMed  Google Scholar 

  49. Kuan H, Hanyu M, Masayuki H, Xie L, Zhang Y, Nagatsu K, Kotaro N, Suzuki H, Hisashi S, Zhang MR (2019) Developing native peptide-based radiotracers for PD-L1 PET imaging and improving imaging contrast by pegylation. Chem Commun (Camb) 55(29):4162–4165

    CAS  Google Scholar 

  50. Lesniak WG, Mease RC, Chatterjee S, Kumar D, Lisok A, Wharram B, Kalagadda VR, Emens LA, Pomper MG, Nimmagadda S (2019) Development of [(18)F]FPy-WL12 as a PD-L1 specific PET imaging peptide. Mol Imaging 18:1536012119852189

    PubMed  PubMed Central  Google Scholar 

  51. Wissler HL, Ehlerding EB, Lyu Z, Zhao Y, Zhang S, Eshraghi A, Buuh ZY, McGuth JC, Guan Y, Engle JW (2019) and others. Site-specific immuno-PET tracer to image PD-L1. Mol Pharm 16(5):2028–2036

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Li D, Zou S, Cheng S, Song S, Wang P, Zhu X (2019) Monitoring the Response of PD-L1 Expression to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Nonsmall-Cell Lung Cancer Xenografts by Immuno-PET Imaging. Mol Pharm 16(8):3469–3476

    CAS  PubMed  Google Scholar 

  53. Jiang J, Zhang M, Li G, Liu T, Wan Y, Liu Z, Zhu H, Yang Z (2020) Evaluation of (64)Cu radiolabeled anti-hPD-L1 Nb6 for positron emission tomography imaging in lung cancer tumor mice model. Bioorg Med Chem Lett 30(4):126915

    CAS  PubMed  Google Scholar 

  54. Lv G, Sun X, Qiu L, Sun Y, Li K, Liu Q, Zhao Q, Qin S, Lin J (2020) PET Imaging of Tumor PD-L1 Expression with a Highly Specific Nonblocking Single-Domain Antibody. J Nucl Med 61(1):117–122

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xing Y, Chand G, Liu C, Cook GJR, O'Doherty J, Zhao L, Wong NCL, Meszaros LK, Ting HH, Zhao J (2019) Early Phase I Study of a (99 m)Tc-Labeled Anti-Programmed Death Ligand-1 (PD-L1) Single-Domain Antibody in SPECT/CT Assessment of PD-L1 Expression in Non-Small Cell Lung Cancer. J Nucl Med 60(9):1213–1220

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Conti M, Eriksson L (2016) Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys 3(1):8

    PubMed  PubMed Central  Google Scholar 

  57. Cleeren F, Lecina J, Ahamed M, Raes G, Devoogdt N, Caveliers V, McQuade P, Rubins DJ, Li W, Verbruggen A (2017) Al18F-labeling of heat-sensitive biomolecules for positron emission tomography imaging. Theranostics 7(11):2924

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Connolly BM, Vanko A, McQuade P, Guenther I, Meng X, Rubins D, Waterhouse R, Hargreaves R, Sur C, Hostetler E (2012) Ex vivo imaging of pancreatic beta cells using a radiolabeled GLP-1 receptor agonist. Mol Imaging Biol 14(1):79–87. https://doi.org/10.1007/s11307-011-0481-7.2012(14):79-87

    Article  PubMed  Google Scholar 

  59. Cloutier RJ, Smith SA, Watson EE, Snyder WS, Warner GG (1973) Dose to the fetus from radionuclides in the bladder. Health Phys 25(2):147–161

    CAS  PubMed  Google Scholar 

  60. Skrable KW, Chabot G, Harris J, French C (1975) Dosimetric Model for the Gastrointestinal Tract. Health Phys 28(4):411–427

    CAS  PubMed  Google Scholar 

  61. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46(6):1023–1027

    PubMed  Google Scholar 

  62. Bélanger MJ, Krause SM, Ryan C, Sanabria-Bohorquez S, Li W, Hamill TG, Burns HD (2008) Biodistribution and radiation dosimetry of [18F]F-PEB in nonhuman primates. Nucl Med Commun 29(10):915–919

    PubMed  Google Scholar 

  63. Fujimoto D, Uehara K, Sato Y, Sakanoue I, Ito M, Teraoka S, Nagata K, Nakagawa A, Kosaka Y, Otsuka K et al (2017) Alteration of PD-L1 expression and its prognostic impact after concurrent chemoradiation therapy in non-small cell lung cancer patients. Sci Rep 7(1):11373

    PubMed  PubMed Central  Google Scholar 

  64. Rojko L, Reiniger L, Teglasi V, Fabian K, Pipek O, Vagvolgyi A, Agocs L, Fillinger J, Kajdacsi Z, Timar J (2018) and others. Chemotherapy treatment is associated with altered PD-L1 expression in lung cancer patients. J Cancer Res Clin Oncol 144(7):1219–1226

    CAS  PubMed  Google Scholar 

  65. Takahashi T, Tateishi A, Bychkov A, Fukuoka J (2019) Remarkable alteration of PD-L1 expression after immune checkpoint therapy in patients with non-small-cell lung cancer: two autopsy case reports. Int J Mol Sci 20(10):2578

    CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J Rubins.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubins, D.J., Meng, X., McQuade, P. et al. In Vivo Evaluation and Dosimetry Estimate for a High Affinity Affibody PET Tracer Targeting PD-L1. Mol Imaging Biol 23, 241–249 (2021). https://doi.org/10.1007/s11307-020-01544-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01544-2

Key words

Navigation