Skip to main content

Advertisement

Log in

Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China

  • Original article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Agricultural adaptation is crucial for sustainable farming amid global climate change. By harnessing projected climate data and using crop modeling techniques, the future trends of food production can be predicted and better adaptation strategies can be assessed. The main objective of this study is to analyze the maize yield response to future climate projections in the Guanzhong Plain, China, by employing multiple crop models and determining the effects of irrigation and planting date adaptations. Five crop models (APSIM, AquaCrop, DSSAT, EPIC, and STICS) were used to simulate maize (Zea mays L.) yield under projected climate conditions during the 2030s, 2050s, and 2070s, based on the combination of 17 General Circulation Models (GCMs) and two Representative Concentration Pathways (RCPs 6.0 and 8.5). Simulated scenarios included elevated and constant CO2 levels under current adaptation (no change from current irrigation amount, planting date, and fertilizer rate), irrigation adaptation, planting date adaptation, and irrigation-planting date adaptations. Results from both maize-producing districts showed that current adaptation practices led to a decrease in the average yield of 19%, 27%, and 33% (relative to baseline yield) during the 2030s, 2050s, and 2070s, respectively. The future yield was projected to increase by 1.1–23.2%, 1.0–22.3%, and 2–31% under irrigation, delayed planting date, and double adaptation strategies, respectively. Adaptation strategies were found effective for increasing the future average yield. We conclude that maize yield in the Guanzhong Plain can be improved under future climate change conditions if irrigation and planting adaptation strategies are used in conjunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmadi SH, Mosallaeepour E, Haghighi kAA, Sepaskhah AR (2015) Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements. Water Resour 29:2837–2853. https://doi.org/10.1007/s11269-015-0973-3

  • Alcamo J, Dronin N, Endejan M, Golubev G, Kirilenko A (2007) A new assessment of climate change impacts on food production shortfalls and water availability in Russia. Glob Environ Change 17:429–444. https://doi.org/10.1016/j.gloenvcha.2006.12.006

    Article  Google Scholar 

  • Anothai J, Soler CMT, Green A, Trout TJ, Hoogenboom G (2013) Evaluation of two evapotranspiration approaches simulated with the CSM-CERES-Maize model under different irrigation strategies and the impact on maize growth, development and soil moisture content for semi-arid conditions. Agric Forest Meteorol 176:64–76. https://doi.org/10.1016/j.agrformet.2013.03.001

    Article  Google Scholar 

  • Araya A, Girma A, Getachew F (2015b) Exploring impacts of climate change onmaize yield in two contrasting agro-ecologies of Ethiopia. Asian J Appl Sci Eng 4:27–37. DOIPrefix: 10.15590

  • Araya A, Hoogenboom G, Luedeling E, Hadgu KM, Kisekka I, Martorano LG (2015a) Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agric For Meteorol 214-215:25–265. https://doi.org/10.1016/j.agrformet.2015.08.259

    Article  Google Scholar 

  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, de Sanctis G, Doltra J, Fereres E, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Koehler AK, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Eyshi Rezaei E, Ruane AC, Semenov MA, Shcherbak I, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn PJ, Waha K, Wang E, Wallach D, Wolf J, Zhao Z, Zhu Y (2015). Rising temperatures reduce global wheat production. Nat. Climate Change, 5:143–147. https://doi.org/10.1038/NCLIMATE2470

  • Babel MS, Turyatunga E (2014) Evaluation of climate change impacts and adaptation measures for maize cultivation in the western Uganda agro-ecological zone. Theor Appl Climatol 119:239–254. https://doi.org/10.1007/s00704-014-1097-z

    Article  Google Scholar 

  • Baron C, Sultan B, Balme M, Sarr B, Traore S, Lebel T, Janicot S, Dingkuhn M (2005) From GCM grid cell to agricultural plot: same scale issues affecting modelling of climate impact. Philos T Roy Soc B 360:2095–2108. https://doi.org/10.1098/rstb.2005.1741

    Article  Google Scholar 

  • Bregaglio S, Hossard L, Cappelli G, Resmondb R, Bocchic S, Barbierb J, Rugetd F, Delmotte S (2017) Identifying trends and associated uncertainties in potential rice production under climate change in Mediterranean areas. Agric. Forest Meterol. 237:219–232. https://doi.org/10.1016/j.agrformet.2017.02.015

    Article  Google Scholar 

  • Brisson N, Gary C, Justes E, Sinoquet H (2003) An overview of the crop model STICS. Eur J Agron 18:309–332. https://doi.org/10.1016/S1161-0301(02)00110-7

    Article  Google Scholar 

  • Cao Y, Zhang GH, Luo RT (2010) Response of runoff and sediment discharge to global climate change in Jinghe River basin. Sci Soil Water Conserv 8:30–35

    Google Scholar 

  • Cavero J, Farré I, Debaeke P, Faci JM (2000) Simulation of maize yield under water stress with the EPIC phase and CROPWAT models. Agron J 92:679–690. https://doi.org/10.2134/agronj2000.924679x

    Article  Google Scholar 

  • Chen C, Baethgen WE, Robertson A (2013) Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961–2003. Clim Chang 116:767–788. https://doi.org/10.1007/s10584-012-0509-2

    Article  Google Scholar 

  • Chen Y, Han X, Si W, Wu Z, Chien H, Okamoto K (2017) An assessment of climate change impacts on maize yields in Hebei Province of China. Sci Total Environ 581-581:507–517. https://doi.org/10.1016/j.scitotenv.2016.12.158

    Article  Google Scholar 

  • Chisanga CB, Phiri E, Chinene VR, Chabala LM (2020) Projecting maize yield under local scale climate change scenarios using crop models: sensitivity to sowing dates, cultivar, and nitrogen fertilizer rates. Food Energy Secu. https://doi.org/10.1002/fes3.231

  • Corbeels M, Berre D, Rusinamhodzi L, Ridaura SL (2018) Can we use crop modelling for identifying climate change adaptation options? Agric Forest Meterol 256-257:46–52. https://doi.org/10.1016/j.agrformet.2018.02.026

    Article  Google Scholar 

  • Cortes AJ, Monserrate FA, Ramírez VJ, Madrinan S, Blair MW (2013) Drought tolerance in wild plant populations: the case of common beans (Phaseolus vulgaris L.). PLoS One 8:e62898. https://doi.org/10.1371/journal.pone.0062898

    Article  Google Scholar 

  • Deb P, Shrestha S, Babel MS (2014) Forecasting climate change impacts and evaluation of adaptation options for maize cropping in the hilly terrain of Himalayas: Sikkim, India. Theor Appl Climatol 121:649–667. https://doi.org/10.1007/s00704-014-1262-4

    Article  Google Scholar 

  • Dejonge KC, Ascough II, Andales JC, Hansen AA, Garcia NC, Arabi LAM (2012) Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation. Agric Water Manag 115:92–103. https://doi.org/10.1016/j.agwat.2012.08.013

    Article  Google Scholar 

  • Duncan JMA, Dash J, Atkinson PM (2015) Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing. Glob Chang Biol 21:1541–1551. https://doi.org/10.1111/gcb.12660

    Article  Google Scholar 

  • Durand JL et al (2018) How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield? Eur J Agron 100:67–75. https://doi.org/10.1016/j.eja.2017.01.002

  • Ewert F et al (2015) Crop modelling for integrated assessment of risk to food production from climate change. Environ Model Softw 72:287–303. https://doi.org/10.1016/j.envsoft.2014.12.003

  • Gammans M, Mérel P, Bobea O, A 2017. Negative impacts of climate change on cereal yields: statistical evidence from France. Environ Res Lett 12:054007. https://doi.org/10.1088/1748-9326/aa6b0c

  • Godfray HCJ, Pretty J, Thomas SM, Warham EJ, Beddington JR (2011) Linking policy on climate and food. Science. 331:1013–1014. .https://doi.org/10.1126/science.1202899

  • Guo R, Lin Z, Mo X, Yang C (2010) Responses of crop yield and water use efficiency to climate change in the North China Plain. Agric Water Manag 97:1185–1194. https://doi.org/10.1016/j.agwat.2009.07.006

    Article  Google Scholar 

  • Ho CH, Lur HS, Yao MH, Liao FC, Lin YT, Yagi N, Lu HJ (2018) The impact on food security and future adaptation under climate variation: a case study of Taiwan’s agriculture and fisheries. Mitig Adapt Strateg Glob Change 23:311–347. https://doi:10.1007/s11027-017-9742-3

  • Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485. https://doi.org/10.1038/nature09670

    Article  Google Scholar 

  • Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI, McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C, Moore AD, Brown H, Whish JPM, Verrall S, Fainges J, Bell LW, Peake AS, Poulton PL, Hochman Z, Thorburn PJ, Gaydon DS, Dalgliesh NP, Rodriguez D, Cox H, Chapman S, Doherty A, Teixeira E, Sharp J, Cichota R, Vogeler I, Li FY, Wang E, Hammer GL, Robertson MJ, Dimes JP, Whitbread AM, Hunt J, van Rees H, McClelland T, Carberry PS, Hargreaves JNG, MacLeod N, McDonald C, Harsdorf J, Wedgwood S, Keating BA (2014) APSIM–evolution towards a new generation of agricultural systems simulation. Environ Model Softw 62:327–350. https://doi.org/10.1016/j.envsoft.2014.07.009

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) A report of working group one of the intergovernmental panel on climate change-summary for policy makers. Intergovernmental Panel on Climate Change

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2013a) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J (Eds), Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 28

  • IPCC (Intergovernmental Panel on Climate Change) (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Core Writing Team, Pachauri RK, Meyer LA (Eds.). IPCC, Geneva, Switzerland

  • Jazy H, Namini KN, Ameri M (2012) Effect of deficit irrigation regimes on yield, yield components and some quality traits of three bread wheat cultivars (Triticum aestivum L.). Int. J Agric Crop Sci 4:234–237

    Google Scholar 

  • Jones JW, Hoogenboom G, Porter C, Boote K, Batchelor W, Hunt L, Wilkens P, Singh U, Gijsman A, Ritchie J (2003) The DSSAT cropping system model. EurJ Agron 18:235–265

    Article  Google Scholar 

  • Jones P, Thornton P (2003) The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob Environ Chang 13:51–59. https://doi.org/10.1016/S0959-3780(02)00090-0

    Article  Google Scholar 

  • Jones P, Thornton P (2013) Generating downscaled weather data from a suite of climate models for agricultural modelling applications. Agric. Sys.114:1–5. https://doi.org/10.1016/j.agsy.2012.08.002

  • Kassie BT, Asseng S, Rotter RP, Hengsdijk H, Ruane AC, Van Ittersum MK (2015) Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models. Clim Chang 129:145–158. https://doi.org/10.1007/s10584-014-1322-x

    Article  Google Scholar 

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288. https://doi.org/10.1016/S1161-0301(02)00108-9

    Article  Google Scholar 

  • Khan MI, Liu D, Fu Q, Saddique Faiz A, M, Li T, Qamar MU, Cui S, Cheng C 2017. Projected changes of future extreme drought events under numerous drought indices in the Heilongjiang Province of China. Water Resour Manag 31:3921–3937. https://doi.org/10.1007/s11269-017-1716-4

  • Laux P, Jaecket G, Tingem RM, Kunstmann H (2010) Impact of climate change on agricultural productivity under rainfed conditions in Cameroon a method to improve attainable crop yields by planting date adaptations. Agric Forest Meteorol 150:1258–1271. https://doi.org/10.1016/j.agrformet.2010.05.008

    Article  Google Scholar 

  • Leakey AD, Ferguson JN, Pignon CP, Wu A, Jin Z, Hammer GL, Lobell DB (2019) Water use efficiency as a constraint and target for improving the resilience and productivity of C3 and C4 crops. Annua Rev Plant Biolo 70:781–808. https://doi.org/10.1146/annurev-arplant-042817-040305

    Article  Google Scholar 

  • Li X, Takahashi T, Suzuki N, Kaiser HM (2011) The impact of climate change on maize yields in the United States and China. Agric Syst 104:348–353. https://doi.org/10.1016/j.agsy.2010.12.006

    Article  Google Scholar 

  • Liang S, Zhang X, Sun N, Li Y, Xu M, Wu L (2019) Modeling crop yield and nitrogen use efficiency in wheat and maize production systems under future climate change. Nutr Cycl Agroecosyst 115:117–136. https://doi.org/10.1007/s10705-019-10013-4

    Article  Google Scholar 

  • Lin Y, Feng Z, Wu W, Yang Y, Zhou Y, Xu C (2017) Potential impacts of climate change and adaptation on maize in Northeast China. Agron J 109:1476–1490. https://doi.org/10.2134/agronj2016.05.0275

    Article  Google Scholar 

  • Liu S, Huanga S, Xie Y, Huang Q, Leng G, Hou B, Zhang Y, Wei X (2018) Spatial-temporal changes of maximum and minimum temperatures in the Wei River Basin, China: changing patterns, causes and implications. Atoms. Res.204:1-11. https://doi.org/10.1016/j.atmosres.2018.01.006

  • Lobell DB (2014) Climate change adaptation in crop production: beware of illusions. Global Food Sec 3:72–76. https://doi.org/10.1016/j.gfs.2014.05.002

    Article  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002. https://doi.org/10.1088/1748-9326/2/1/014002

    Article  Google Scholar 

  • Lobell DB, Schlenker W, Costa RJ (2011) Climate trends and global crop production since 1980. Science 333:616–620. https://doi.org/10.1126/science.1204531

    Article  Google Scholar 

  • Lv Z, Li F, Lu G (2019) Adjusting sowing date and cultivar shift improve maize adaption to climate change in China. Mitig Adapt Strateg Glob Chang 1-20:87–106. https://doi.org/10.1007/s11027-019-09861-w

    Article  Google Scholar 

  • Meng EC, Ruifa Hu, Xiaohua Shi, Shihuang Zhang (2006). Maize in China: production systems, constraints, and research priorities. CIMMYT

    Google Scholar 

  • Msowoya K, Madani K, Davtalab R, Mirchi A, Lund JR (2016) Climate change impacts on maize production in the warm heart of Africa. Water Resour Manag 30:5299–5312. https://doi.org/10.1007/s11269-016-1487-3

    Article  Google Scholar 

  • Nouri M, Homaee M, Bannayan M, Hoogenboom G (2017) Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change. Agric Water Manag 186:108–119. https://doi.org/10.1016/j.agwat.2017.03.004

    Article  Google Scholar 

  • Okada M, Iizumi T, Sakurai G (2015) Modeling irrigation-based climate change adaptation in agriculture: model development and evaluation in Northeast China. J Advan Modeling Earth Sys 07:1409–1424. https://doi.org/10.1002/2014MS000402

    Article  Google Scholar 

  • Ozdogan M (2011) Modeling the impacts of climate change on wheat yields in northwestern Turkey. Agric Ecosyst Environ 141:1–12. https://doi.org/10.1016/j.agee.2011.02.001

    Article  Google Scholar 

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Chang 14:53–67. https://doi.org/10.1016/j.gloenvcha.2003.10.008

    Article  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51. https://doi.org/10.1038/nature09364

    Article  Google Scholar 

  • Rahman MHU et al (2017) Application of CSM-CROPGRO-cotton model for cultivars and optimum planting dates: evaluation in changing semi-arid climate. Field Crop Res 238:139–152. https://doi.org/10.1016/j.fcr.2017.07.007

    Article  Google Scholar 

  • Rahman MHU et al (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric. Forest Meteorol. 253-254:94–113. https://doi.org/10.1016/j.agrformet.2018.02.008

    Article  Google Scholar 

  • Rao MS, Swathi P, Rao CAR, Rao KV, Raju BMK, Srinivas K, Manimanjari D, Maheswari M (2015) Model and scenario variations in predicted number of generations of Spodoptera litura Fab on peanut during future climate change scenario. PLoS One 10:e0116762. https://doi.org/10.1371/journal.pone.0116762

    Article  Google Scholar 

  • Ray DK, Gerber JS, MacDonald GK, West PC (2014) Climate variation explains a third of global crop yield variability. Nat Commun 6:598. https://doi.org/10.1038/ncomms6989

    Article  Google Scholar 

  • Raza S, Chen Z, Ahmed M, Afzal MR, Aziz T, Zhou J (2018) Dicyandiamide application improved nitrogen use efficiency and decreased nitrogen losses in wheat maize crop rotation in Loess Plateau. Arc Agron Soil Sci 65:450–464. https://doi.org/10.1080/03650340.2018.1506584

    Article  Google Scholar 

  • Richardson CW (1981) Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour Res 17:182–190. https://doi.org/10.1029/WR017i001p00182

    Article  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model inter comparison. Proc Natl Acad Sci U S A 111:3268–3273. https://doi.org/10.1073/pnas.1222463110

    Article  Google Scholar 

  • Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn P, Antle JM, Nelson GC, Porter C, Janssen S, Asseng S, Basso B, Ewert F, Wallach D, Baigorria G, Winter JM (2013) The agricultural model inter comparison and improvement project (AgMIP): protocols and pilot studies. Agric For Meteorol 170:166–182. https://doi.org/10.1016/j.agrformet.2012.09.011

    Article  Google Scholar 

  • Ruane, AC, Cecil LD, Horton RM, Gordo’n R, McCollum R, Brown D, Killough B, Goldberg R, Greeley AP, Rosenzweig C (2013) Climate change impact uncertainties for maize in Panama: farm information, climate projections, and yield sensitivities. Agric. Forest Meteorol. 170:132–145. https://doi.org/10.1016/j.agrformet.2011.10.015

  • Rurindal J, Van Wijk MT, Mapfumo P, Descheemaeker K, Supit I, Giller KE (2015) Climate change and maize yield in southern Africa: what can farm management do? Glob Chang Biol 21:4588–4601. https://doi.org/10.1111/gcb.13061

    Article  Google Scholar 

  • Saddique Q, Cai H, Ishaque W, Chen H, Chau HW, Chatta MU, Hassan MU, Khan MI, He J (2019) Optimizing the sowing date and irrigation strategy to improve maize yield by using CERES (crop estimation through resource and environment synthesis)-maize model. Agronomy 9:109. https://doi.org/10.3390/agronomy9020109

    Article  Google Scholar 

  • Saddique Q, Khan MI, Habib ur Rahman M, Jiatun X, Waseem M, Gaiser T, Waqas MM, Ahmad I, Chong L, Cai H (2020) Effects of elevated air temperature and CO2 on maize production and water use efficiency under future climate change scenarios in Shaanxi Province, China. Atmosphere, 11:843. https://doi.org/10.3390/atmos11080843

  • Saddique Q, Liu DL, Wang B, Feng P, He J, Ajaz A, Ji J, Xu J, Zhang C, Cai H (2020) Modelling future climate change impacts on winter wheat yield and water use: a case study in Guanzhong Plain, northwestern China. Eur J Agron 119:126113. https://doi.org/10.1016/j.eja.2020.126113

    Article  Google Scholar 

  • SAIEID – Shaanxi Agriculture Institute of Engineering Investigations and Design (1982) Agricultural soil in Shaanxi. Shaanxi Science and Technology Press, Beijing, pp 74–83 (in Chinese)

    Google Scholar 

  • Shen H, Chen Y, Wang Y, Xing X, Ma X (2020) Evaluation of the potential effects of drought on summer maize yield in the Western Guanzhong Plain, China. Agronomy 10:1095. https://doi.org/10.3390/agronomy10081095

    Article  Google Scholar 

  • Shirsath PB, Aggarwal PK, Thornton PK, Dunnett A (2017) Prioritizing climate smart agricultural land use options at a regional scale. Agric Syst 151:174–183. https://doi.org/10.1016/j.agsy.2016.09.018

    Article  Google Scholar 

  • Stocker, TF (2013b) Climate change 2013. Thomas F (ed) The physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Su B, Huang J, Fischer T, Wang Y, Kundzewicz, ZW, Zhai J Tao H (2018). Drought losses in China might double between the 1.5° C and 2.0° C warming. Proceedings of the National Academy of Sciences, 115:10600–10605. https://doi.org/10.1073/pnas.1802129115

  • Sultana H, Ali N, Iqbal MM, Khan A (2009) Vulnerability and adaptability of wheat production in different climatic zones of Pakistan under climate change scenarios. Clim Chang 94:123–142. https://doi.org/10.1007/s10584-009-9559-5

    Article  Google Scholar 

  • Sun SK, Li C, Wu PT, Zhao XN, Wang YB (2018) Evaluation of agricultural water demand under future climate change scenarios in the Loess Plateau of Northern Shaanxi, China. 84: 811–819. https://doi.org/10.1016/j.ecolind.2017.09.048

    Article  Google Scholar 

  • Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric. Forest Meteorol. 138:82–92. https://doi.org/10.1016/j.agrformet.2006.03.014

    Article  Google Scholar 

  • Tao F, Zhang Z (2011) Impacts of climate change as a function of global mean temperature: maize productivity and water use in China. Clim Chang 105:409–432. https://doi.org/10.1007/s10584-010-9883-9

    Article  Google Scholar 

  • Tao F, Zhang Z, Zhang S, Rötter RP, Shi W, Xiao D, Zhang H (2016) Historical data provide new insights into response and adaptation of maize production systems to climate change/variability in China. Field Crops Res 185:1–11. https://doi.org/10.1016/j.fcr.2015.10.013

    Article  Google Scholar 

  • Thomas A (2008) Agricultural irrigation demand under present and future climate scenarios in China. Glob. Planetary Change 60:306–326

    Article  Google Scholar 

  • Vanuytrecht E, Raes D, Steduto P, Hsiao TC, Fereres E, Heng LK, Vila MG, Moreno PM (2014) AquaCrop: FAO’s crop water productivity and yield response model. Env Model Softw 62:351–360. https://doi.org/10.1016/j.envsoft.2014.08.005

    Article  Google Scholar 

  • Wallach D, Mearns LO, Ruane AC, Rötter RP, Asseng S (2016) Lessons from climate modeling on the design and use of ensembles for crop modeling. Clim Chang 139:551–564. https://doi.org/10.1007/s10584-016-1803-1

    Article  Google Scholar 

  • Wang M, Li Y, Ye W, Bornman JF, Yan X (2011) Effects of climate change on maize production, and potential adaptation measures: a case study in Jilin Province. China Climate Res 46:223–242. https://doi.org/10.3354/cr00986

    Article  Google Scholar 

  • Wang JX, Huang JK, Yang J (2014) Overview of impacts of climate change and adaptation in China agriculture. J. Integr. Agric.13:1–17. https://doi.org/10.1016/S2095-3119(13)60588-2

  • Wang J, Wang E, Yang X (2012) Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Clim Chang 113:825–840. https://doi.org/10.1007/s10584-011-0385-1

    Article  Google Scholar 

  • Williams JR, Jones CA, Kiniry JR, Spanel, DA (1989) The EPIC crop growth model. Trans. ASAE 32:497–511. https://doi.org/10.13031/2013.31032

  • Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink, KM, Legates DR, O donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90: 8995–9005. https://doi.org/10.1029/JC090iC05p08995

  • Xia L, Robock A, Cole J, Curry LC, Ji D, Jones A, Kravitz B, Moore JC, Muri H, Niemeier U, Singh B, Tilmes S, Watanabe S, Jin- Ho Yoon JH (2014) Solar radiation management impacts on agriculture in China: a case study in the Geoengineering Model Intercomparison Project (GeoMIP), J Geophys Res Atmos 119: 8695–8711. https://doi.org/10.1002/2013JD020630

  • Xu J, Cai H, Saddique Q, Wang X, Li L, M C, Lu Y (2019) Evaluation and optimization of border irrigation in different irrigation seasons based on temporal variation of infiltration and roughness. Agric Water Mang 214: 64–77. https://doi.org/10.1016/j.agwat.2019.01.003

  • Yang C, Fraga H, Ieperen WV, Santos JA (2017) Assessment of irrigated maize yield response to climate change scenarios in Portugal. Agric Water Mange 184:178–190. https://doi.org/10.1016/j.agwat.2017.02.004

    Article  Google Scholar 

  • Yu C, Huang X, Chen H, Huang G, Ni S, Wright JS, Hall J, Ciais P, Zhang J, Xiao Y, Sun Z, Wang X, Yu L (2018) Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes. Earth’s Future 6:689–703. https://doi.org/10.1002/2017EF000768

    Article  Google Scholar 

  • Zhai J, Su B, Krysanova V, Vetter T, Gao C, Jiang T (2010) Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J Clim 23:649–663. https://doi.org/10.1175/2009JCLI2968.1

    Article  Google Scholar 

  • Zhang Q, Li J, Chen YD, Chen X (2011) Observed changes of temperature extremes during 1960–2005 in China: natural or human-induced variations? Theor Appl Climatol 106:417–431. https://doi.org/10.1007/s00704-011-0447-3

    Article  Google Scholar 

  • Zhang Y, Zhao Y (2017) Ensemble yield simulations: using heat-tolerant and later-maturing varieties to adapt to climate warming. PLoS One 12:e0176766. https://doi.org/10.1371/journal.pone.0176766

    Article  Google Scholar 

  • Zhu JW, Chen YY, Wang B, Zhao Y, Wang JR, Zhang M (2018). Analysis based on water ecological footprint for sustainable utilization of water resources in the Guanzhong Plain, China. IOP Conference Series: Earth Environ. Sci. 191:012106). https://doi.org/10.1088/1755-1315/191/1/012106

Download references

Acknowledgments

This research was jointly supported by National Key Research and Development Program of China (2016YFC0400201), the National Science Foundation of China (no. 51179162), and the Program of Introducing Talents of Discipline to Universities, China (B12007). The authors would like to thank Luca Doro and INRA team France for providing the assistance in calibration of the EPIC model and STICS model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanjie Cai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 4090 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saddique, Q., Cai, H., Xu, J. et al. Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China. Mitig Adapt Strateg Glob Change 25, 1523–1543 (2020). https://doi.org/10.1007/s11027-020-09935-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-020-09935-0

Keywords

Navigation