Skip to main content
Log in

Quasi-Adiabatic External State Preparation of Ultracold Atoms in Microgravity

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The Cold Atom Laboratory on the International Space Station produces ultracold gases of rubidium and potassium in a tight magnetic trap near the surface of a magnetic chip. In order to use these samples in long-duration field-free experiments, the atoms must be moved away from the chip, expanded to larger volume, and released from the trap. We describe how these goals can be achieved using quasi-adiabatic techniques. For rubidium atoms, we demonstrate a displacement of 0.6 mm and expansion into a trap with a mean oscillation frequency of 6.4 Hz. The center-of-mass release velocity and the condensate expansion velocity are about 0.2 mm/s each. An unexpectedly large background magnetic field gradient is observed, which limits the usable interaction time for the released atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ammann, H., Christensen, N.: Delta kick cooling A new method for cooling atoms. Phys. Rev. Lett. 78, 2088 (1997)

    Article  Google Scholar 

  • Aoki, T., Kato, T., Tanami, Y., Nakamatsu, H.: δ-kick cooling using the Ioffe-Pritchard potential. Phys. Rev A 73, 063603 (2006)

    Article  Google Scholar 

  • Aveline, D.C., Williams, J.R., Elliott, E.R., Dutenhoffer, C., Kellogg, J.R., Kohel, J.M., Lay, N.E., Oudrhiri, K., Shotwell, R.F., Yu, N., Thompson, R.J.: Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature 582, 193 (2020)

    Article  Google Scholar 

  • Becker, D., Lachmann, M.D., Seidel, S.T., Ahlers, H., Dinkelaker, A.N., Grosse, J., Hellmig, O., Müntinga, H, Schkolnik, V., Wendrich, T., Wenzlawski, A., Weps, B., Corgier, R., Franz, T., Gaaloul, N., Herr, W., Lüdtke, D., Popp, M., Amri, S., Duncker, H., Erbe, M., Kohfeldt, A., Kubelka-Lange, A., Braxmaier, C., Charron, E., Ertmer, W., Krutzik, M., Lämmerzahl, C., Peters, A., Schleich, W.P., Sengstock, K., Walser, R., Wicht, A., Windpassinger, P., Rasel, E.M.: Space-borne Bose–Einstein condensation for precision interferometry. Nature 562(7727), 391–395 (2018)

    Article  Google Scholar 

  • Condon, G., Rabault, M., Barrett, B., Chichet, L., Arguel, R., Eneriz-Imaz, H., Naik, D., Bertoldi, A., Battelier, B., Bouyer, P., Landragin, A.: All-optical Bose–Einstein Condensates in microgravity. Phys. Rev. Lett. 123, 240402 (2019)

    Article  Google Scholar 

  • Corgier, R., Amri, S., Herr, W., Ahlers, H., Rudolph, J., Guéry-Odelin, D., Rasel, E.M., Charron, E., Gaaloul, N.: Fast manipulation of Bose–Einstein condensates with an atom chip. J. Phys. 20(5):055002 (2018)

  • Cronin, A.D., Schmiedmayer, J., Pritchard, D.E.: Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051 (2009)

    Article  Google Scholar 

  • D’Incao, J.P., Krutzik, M., Elliott, E., Williams, J.R.: Enhanced association and dissociation of heteronuclear feshbach molecules in a microgravity environment. Phys. Rev. A 95, 012701 (2017)

    Article  Google Scholar 

  • Dalfovo, F., Giorgini, S., Pitaevskii, L., Stringari, S.: Theory of Bose–Einstein, condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Article  Google Scholar 

  • Delikatny, T., Forbes, M.: Private communication (2020)

  • Elliott, E.R., Krutzik, M.C., Williams, J.R., Thompson, R.J., Aveline, D.C.: NASA’s Cold Atom Lab (CAL): system development and ground test status. npj Micrograv. 4(1), 16 (2018)

    Article  Google Scholar 

  • Fortagh, J., Zimmermann, C.: Magnetic microtraps for ultracold atoms. Rev. Mod Phys. 79, 235 (2007)

    Article  Google Scholar 

  • Gaaloul, N., Bigelow, N.: Private communication (2020)

  • Hughes, K.J., Deissler, B., Burke, J.H.T., Sackett, C.A.: High-fidelity manipulation of a Bose–Einstein, condensate using an optical standing wave. Phys. Rev. A 76, 035601 (2007)

    Article  Google Scholar 

  • Lämmerzahl, C.: The Einstein equivalence principle and the search for new physics. In: Giulini, D., Kiefer, C., Lämmerzahl, C. (eds.) Quantum Gravity: From Theory to Experimental Search, p 367. Springer, Berlin (2003)

  • Leanhardt, A.E., Pasquini, T.A., Saba, M., Schirotzek, A., Shin, Y., Kielpinski, D., Pritchard, D.E., Ketterle, W.: Cooling Bose–Einstein condensates below 500 picokelvin. Science 301, 1513 (2003)

    Article  Google Scholar 

  • Loriani, S., Schubert, C., Schlippert, D., Ertmer, W., Dos Santos, F.P., Rasel, E.M., Gaaloul, N., Wolf, P.: Resolution of the co-location problem in satellite quantum tests of the universality of free fall (2020)

  • Lundblad, N., Carollo, R.A., Lannert, C., Gold, M.J., Jiang, X., Paseltiner, D., Sergay, N., Aveline, D.C.: Shell potentials for microgravity Bose–Einstein, condensates. npj Micrograv. 5(1), 30 (2019)

    Article  Google Scholar 

  • McPherson, K., Hrovat, K., Kelly, E., Keller, J.: NASA report NP-2015-11-040-JSC: A researcher’s guide to: International Space Station acceleration environment (2015)

  • Mossman, M., Engels, P., D’Incao, J., Jin, D., Cornell, E.: Efimov studies of an ultracold cloud of 39k atoms in microgravity: Numerical modelling and experimental design. In APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, volume 2016 of APS Meeting Abstracts, pp. K1, 103 (2016)

  • Müntinga, H., et al.: Interferometry with Bose–Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013)

    Article  Google Scholar 

  • Rudolph, J., Gaaloul, N., Singh, Y., Ahlers, H., Herr, W., Schulze, T.A., Seidel, S.T., Rode, C., Schkolnik, V., Ertmer, W., Rasel, E.M., Muentinga, H., Koenemann, T., Resch, A., Herrmann, S., Laemmerzahl, C., van Zoest, T., Dittus, H., Vogel, A., Wenzlawski, A., Sengstock, K., Meyer, N., Bongs, K., Krutzik, M., Lewoczko-Adamczyk, W., Schiemangk, M., Peters, A., Eckart, M., Kajari, E., Arnold, S., Nandi, G., Schleich, W.P., Walser, R., Steinmetz, T., Haensch, T.W., Reichel, J.: Degenerate quantum gases in microgravity. Micrograv. Sci. Technol. 23, 287 (2011)

    Article  Google Scholar 

  • Sackett, C.A., Lam, T.C., Stickney, J.C., Burke, J.H.: Extreme adiabatic expansion in micro-gravity Modeling for the cold atomic laboratory. Micrograv. Sci. Technol. 30(3), 155–163 (2018)

    Article  Google Scholar 

  • Williams, J., wey Chiow, S., Yu, N., Müller, H.: Quantum test of the equivalence principle and space-time aboard the international space station. J. Phys. 18(2), 025018 (2016)

Download references

Acknowledgements

We are grateful to the support team at Jet Propulsion Laboratory, including David Aveline, Jason Williams, Jim Kohel and Jim Kellogg. We thank Ted Delikatny and Michael Forbes at Washington State University for implementing and sharing the NLSE tests checking for internal condensate excitations. We thank Nick Bigelow and Naceur Gaaloul for sharing and discussing their STA results. We are also happy to acknowledge useful discussions with other members of the CAL PI team, especially Nathan Lundblad, Peter Engels, and Maren Mossman. Finally, we thank Mark Edwards for pointing out an error in one of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Sackett.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NASA, grant number 1640951.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pollard, A.R., Moan, E.R., Sackett, C.A. et al. Quasi-Adiabatic External State Preparation of Ultracold Atoms in Microgravity. Microgravity Sci. Technol. 32, 1175–1184 (2020). https://doi.org/10.1007/s12217-020-09840-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-020-09840-w

Keywords

Navigation