Skip to main content

Advertisement

Log in

A Sustainable Approach for Producing Ti and TiS2 from TiC

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

TiC was examined as a starting material for Ti metal production by sulfidation and electrochemical reduction in molten salt. The sulfur evaporation temperature, sulfidation temperature, and time were optimized in a dual-zone furnace for the efficient and sustainable formation of TiS2 as well as carbon removal from TiC by S2 gas sulfidation. A mixture of TiS2 and Ti2.45S4 powders was synthesized from TiC at 1200 °C, and a perfect carbon removal was achieved to a very clean level as low as 0.025 mass pct C. The sulfides derived from TiC were then electrochemically reduced in molten CaCl2-0.5 mol pct CaS salt. The spherical shape Ti powder consisting of high-purity Ti sheets was obtained from TiS2 without the carbon contamination. This method might be applied for sustainable recycling of waste carbides and for production of low-cost Ti powders via TiC or TiOxCyNz from the titanium ore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. LECO is a trademark of LECO Corporation, St. Joseph, MI.

REFERENCES

  1. A. Chaturvedi, P. Hu, Y. Long, C. Kloc, S. Madhavi, and V. Aravindan: Scripta Mater., 2019, vol. 161, pp. 54–57.

    CAS  Google Scholar 

  2. E. Long, S.O. Brien, E.A. Lewis, E. Prestat, C. Downing, C.S. Cucinotta, S. Sanvito, S.J. Haigh, and V. Nicolosi: NPJ 2D Mater. Appl., 2017, vol. 1, p. 22.

    Google Scholar 

  3. A. Chaturvedi, P. Hu, V. Aravindan, C. Kloc, and S. Madhavi: J. Mater. Chem. A, 2017, vol. 5, pp. 9177–81.

    CAS  Google Scholar 

  4. V. Vega-Mayoral, R. Tian, A.G. Kelly, A. Griffin, A. Harvey, M. Borrelli, K. Nisi, C. Backes, and J.N. Coleman: Nanoscale, 2019, vol. 11, pp. 6206–16.

    CAS  Google Scholar 

  5. E.A. Suslov, O.V. Bushkova, E.A. Sherstobitova, O.G. Reznitskikh, and A.N. Titov: Ionics, 2016, vol. 22, pp. 503–14.

    CAS  Google Scholar 

  6. A. Garsuch, S. Herzog, L. Montag, A. Krebs, and K. Leitner: ECS Electrochem. Lett., 2012, vol. 1, pp. A24–A26.

    CAS  Google Scholar 

  7. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Nat. Nanotechnol., 2012, vol. 7, pp. 699–712.

    CAS  Google Scholar 

  8. A.L. Let, D.E. Mainwaring, C. Rix, and P. Murugaraj: J. Non-Cryst. Solids, 2008, vol. 354, pp. 1801–07.

    CAS  Google Scholar 

  9. J. Ma, H. Jin, X. Liu, M.E. Fleet, J. Li, X. Cao, and S. Feng: Cryst. Growth Des., 2008, vol. 8, pp. 4460–64.

    CAS  Google Scholar 

  10. H. Jing, Q. Cheng, J.M. Weller, X.S. Chu, Q.H. Wang, and C.K. Chan: J. Mater. Res., 2018, vol. 33, pp. 3540–48.

    CAS  Google Scholar 

  11. T.Y.T. Umebayashi, H. Itoh, and K. Asai: Appl. Phys. Lett., 2002, vol. 81, pp. 454–56.

    CAS  Google Scholar 

  12. H.Y. He: Res. Chem. Intermediat., 2010, vol. 36, pp. 155–61.

    CAS  Google Scholar 

  13. M. Ohta, S. Satoh, T. Kuzuya, S. Hirai, M. Kunii, and A. Yamamoto: Acta Mater., 2012, vol. 60, pp. 7232–40.

    CAS  Google Scholar 

  14. D. Li, X.Y. Qin, J. Zhang, L. Wang, and H.J. Li: Solid State Commun., 2005, vol. 135, pp. 237–40.

    CAS  Google Scholar 

  15. D. Li, X.Y. Qin, J. Zhang, and H.J. Li: Phy. Lett. A., 2006, vol. 348, pp. 379–85.

    CAS  Google Scholar 

  16. D. Li, X.Y. Qin, and J. Zhang: J. Mater. Res., 2006, vol. 21, pp. 480–83.

    CAS  Google Scholar 

  17. N. Suzuki, M. Tanaka, H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki: Mater. Trans., 2017, vol. 58, pp. 367–70.

    CAS  Google Scholar 

  18. E. Ahmadi and R.O. Suzuki: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 140–48.

    Google Scholar 

  19. R.O. Suzuki, Y. Yashima, E. Ahmadi, S. Nobuyoshi, S. Natsui, and T. Kikuchi: 11th Int. Symp. on Molten Salts Chemistry and Technology (MS11), Orleans, France, May 19–23, 2019.

  20. R.O. Suzuki, N. Suzuki, Y. Yashima, S. Natsui, and T. Kikuchi: Extraction 2018, Springer International Publishing, Cham, 2018, pp. 763–71.

  21. M.S. Whittingham: Chem. Rev., 2004, vol. 104, pp. 4271–4302.

    CAS  Google Scholar 

  22. R.M.A. Lieth and J.C.J.M. Terhell: Transition Metal Dichalcogenides, R.M.A. Lieth, ed., Preparation and Crystal Growth of Materials with Layered Structures, Springer Netherlands, Dordrecht, 1977, pp. 141–223.

  23. C. Wu, M. Tan, G. Ye, D.J. Fray, and X. Jin: ACS Sustain. Chem. Eng., 2019, vol. 7, pp. 8340–46.

    CAS  Google Scholar 

  24. E. Ahmadi, Y. Yashima, R.O. Suzuki, and S.A. Rezan: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1808–21.

    Google Scholar 

  25. K. Ono and R.O. Suzuki: JOM, 2002, vol. 54, pp. 59–61.

    CAS  Google Scholar 

  26. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.

    CAS  Google Scholar 

  27. E. Ahmadi, S.A. Rezan, N. Baharun, S. Ramakrishnan, A. Fauzi, and G. Zhang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2354–66.

    Google Scholar 

  28. N. Suzuki, M. Tanaka, H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki: ECS Trans., 2016, vol. 75, pp. 507–15.

    CAS  Google Scholar 

  29. 29. Fang ZZ, Froes FH, Zhang Y (2019) Extractive Metallurgy of Titanium: Conventional and Recent Advances in Extraction and Production of Titanium Metal, 1st ed. Elsevier, New York

    Google Scholar 

  30. R.O. Suzuki: J. Phy. Chem. Solids, 2005, vol. 66, pp. 461–65.

    CAS  Google Scholar 

  31. R.O. Suzuki, K. Teranuma, and K. Ono: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 287–95.

    CAS  Google Scholar 

  32. C. Schwandt, G.R. Doughty, and D.J. Fray: Key Eng. Mater., 2010, vol. 436, pp. 13–25.

    CAS  Google Scholar 

  33. R.O. Suzuki and S. Inoue: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 277–85.

    CAS  Google Scholar 

  34. H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki: Electrochemistry, 2018, vol. 86, pp. 82–87.

    CAS  Google Scholar 

  35. J.L. Murray and H.A. Wriedt: J. Phase Equilibria, 1987, vol. 8, pp. 148–65.

    CAS  Google Scholar 

  36. P. Masset and R.A. Guidotti: J. Power Sources, 2007, vol. 164, pp. 397–414.

    CAS  Google Scholar 

  37. H. Xie, H. Zhao, J. Qu, Q. Song, Z. Ning, and H. Yin: J. Solid State Electrochem., 2019, vol. 23, pp. 903–09.

    Google Scholar 

  38. T. Matsuzaki, R.O. Suzuki, S. Natsui, T. Kikuchi, and M. Ueda: Mater. Trans., 2019, vol. 60, pp. 411–15.

    CAS  Google Scholar 

  39. T. Matsuzaki, R.O. Suzuki, S. Natsui, T. Kikuchi, and M. Ueda: Mater. Trans., 2019, vol. 60, pp. 386–90.

    CAS  Google Scholar 

  40. E. Ahmadi, A. Fauzi, H. Hussin, N. Baharun, K.S. Ariffin, and S.A. Rezan: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 444–54.

    CAS  Google Scholar 

  41. E. Ahmadi, S.A.R.B.S.A. Hamid, H.B. Hussin, N.B. Baharun, S. Ramakrishnan, K.S.B. Ariffin, and M.N.A. Fauzi: INROADS Int. J. Jaipur Nat. Univ., 2016, vol. 5, pp. 11–16.

  42. W.-Y. Li, and F.L. Riley: J. Eur. Ceram. Soc., 1991, vol. 8, pp. 345–54.

    CAS  Google Scholar 

  43. Z.S. Rak and J. Czechowski: J. Eur. Ceram. Soc., 1998, vol. 18, pp. 373–80.

    CAS  Google Scholar 

  44. Y.-C. Lin, A.C. Wang, D.-A. Wang, and C.-C. Chen: Mater. Manuf. Process, 2009, vol. 24, pp. 667–74.

    CAS  Google Scholar 

  45. Y.H. Fei, C.Z. Huang, H.L. Liu, and B. Zou: Ceram. Int., 2014, vol. 40, pp. 10205–10209.

    CAS  Google Scholar 

  46. M. Kitiwan and D. Atong: J. Solid Mech. Mater. Eng., 2007, vol. 1, pp. 938–46.

    Google Scholar 

  47. W.J. Liu and J.J. Jonas: Metall. Trans. A, 1989, vol. 20A, pp. 1361–74.

    CAS  Google Scholar 

  48. Y. Ishiguro, T. Murayama, T. Fujita, and K. Kuroda: Mater. Trans., 2009, vol. 50, pp. 1380–89.

    CAS  Google Scholar 

  49. W.J. Liu, S. Yue, and J.J. Jonas: Metall. Trans. A,1989, vol. 20A, pp. 1907–15.

    CAS  Google Scholar 

  50. L.-J. Norrby and H.F. Franzen: J. Solid State Chem., 1970, vol. 2, pp. 36–41.

    CAS  Google Scholar 

  51. W. Wang, G. Wang, G. Chen, S. Chen, and Z. Huang: Sol. Energy, 2017, vol. 148, pp. 12–16.

    CAS  Google Scholar 

  52. A. Roine: “Outokumpu HSC Chemistry for Windows, Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database.” HSC Ver. 8.08, Outokumpu Research Oy, Pori, 2014.

  53. S.K. Basu and M. Taniguchi: Thermochim. Acta, 1986, vol. 109, pp. 253–65.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Nos. 18F18054 and 17H03434), MEXT Nanotechnology Platform Program (A-19-HK-0034), and Japan Mining Industry Association. The kind support from JSPS and the International Affairs Office of the Faculty of Engineering, Hokkaido University, are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eltefat Ahmadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 30, 2020; accepted September 23, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, E., Suzuki, R.o., Kaneko, T. et al. A Sustainable Approach for Producing Ti and TiS2 from TiC. Metall Mater Trans B 52, 77–87 (2021). https://doi.org/10.1007/s11663-020-01988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01988-5

Navigation