Skip to main content
Log in

Effect of Nozzle Clogging on the Fluid Flow Pattern in a Billet Mold with Particle Image Velocimetry Technology

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The flow pattern of molten steel in a mold of continuous casting affects the temperature distribution and initially solidifies the shell thickness homogeneity, inclusion transport, and liquid slag entrapment. Alumina inclusions in Al-killed steel tend to adhere to the inner wall of the nozzle, which changes the nozzle geometry structures and affects the molten steel flow pattern in the mold. In this study, two different clog shapes—the hemispherical clog and tube clog—were identified based on the clogged straight-nozzle dissection results. The hydraulic straight-nozzle casting model with different clog situations was designed to investigate the effect of the clog status on the fluid flow in the mold using particle image velocimetry (PIV) technology. The results show that a tail stream with a length of 80 mm forms near the nozzle wall in the fluid flow direction when the hemispherical clog sticks to the nozzle and the jet stream deflects to the clogged side after the jet stream and tail stream mix. However, when the hemispherical clog sticks to the nozzle outlet, the jet stream deflects to the nonclogged side. The increase in the tube clog thickness causes an increase in the jet stream velocity magnitude near the nozzle outlet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1.P. Fei, Y. Min, C.J. Liu, and M.F. Jiang: Int. J. Miner. Metall. Mater., 2019, vol.26, pp. 186-93.

    Article  CAS  Google Scholar 

  2. 2.M. Bielnicki and J. Jowsa: Steel Res. Int., 2018, vol.89, pp. 1800110-8.

    Article  Google Scholar 

  3. 3.H.H. An, Y.P. Bao, M. Wang, and L.H. Zhao: Metall. Res. Technol., 2017, vol.114, pp. 405-17.

    Article  Google Scholar 

  4. 4.Y.K. Huo, L.H. Zhao, H.H. An, M. Wang, and C.D. Zou: Int. J. Miner. Metall. Mater, 2020, vol.27, pp. 319-27.

    Article  CAS  Google Scholar 

  5. 5.H. An, Y. Bao, M. Wang, and L. Zhao: Metall. Res. Technol., 2017, vol.115, pp. 103-15

    Article  Google Scholar 

  6. 6.Q. Fang, H. Zhang, J. Wang, C. Liu, and H. Ni: Metall. Mater. Trans. B, 2020, vol.51, pp. 1705-17.

    Article  Google Scholar 

  7. 7.Y. Chen, L. Zhang, S. Yang, and J. Li: Jom-Us, 2012, vol.64, pp. 1080-6.

    Article  CAS  Google Scholar 

  8. M.M. Aboutalebi, L. Francis, D.A. Julien, M.M. Isac, R.I..L. Guthrie: J. Jom-Us, 2018, vol. 70, pp. 2088-95.

    Article  CAS  Google Scholar 

  9. 9.S. Cho, B.G. Thomas, and S. Kim: Metall. Mater. Trans. B, 2019, vol.50, pp. 52-76.

    Article  Google Scholar 

  10. 10.H. Bai, P. Ni, M. Ersson, T. Zhang, and P.G. Jönsson: Ironmak. Steelmak., 2019, vol.46, pp. 911-20.

    Article  CAS  Google Scholar 

  11. 11.Y. Bao, S. Zhu, N. Tian, and B. Xu: J. Univ. Sci. Technol. Beijing, 1999, vol.21, pp. 135-7.

    Google Scholar 

  12. 12.S. Yokoya, P.G.J. Nsson, K. Sasaki, K. Tada, S. Takagi, and M. Iguchi: Scand. J. Metall., 2004, vol.33, pp. 22-8.

    Article  CAS  Google Scholar 

  13. F. Qing: Ph D. Thesis, Wuhan University of Science and Technology, 2018, p. 89.

  14. 14.R. Liu, K. Blazek, B. Forman, C. Fritz, and C. Graham: Steel Res. Int., 2019, vol.90, pp. 1800398-409.

    Article  Google Scholar 

  15. 15.C.A. Real-Ramirez, R. Miranda-Tello, I. Carvajal-Mariscal, F. Sanchez-Silva, and J. Gonzalez-Trejo: Metall. Mater. Trans. B, 2017, vol.48, pp. 1358-75.

    Article  Google Scholar 

  16. 16.N. Kojola, S. Ekerot, and P. Jönsson: Ironmaking Steelmaking, 2013, vol.38, pp. 81-9.

    Article  Google Scholar 

  17. 17.C. Toulouse, A. Pack, A. Ender, and S. Petry: Steel Res. Int., 2008, vol.79, pp. 149-55.

    Article  CAS  Google Scholar 

  18. 18.S. Basu, C.S. Kumar, and N.U. Girase: ISIJ Int., 2004, vol.44, pp. 1653-60.

    Article  CAS  Google Scholar 

  19. 19.Y. Vermeulen, B. Coletti, P. Wollants, B. Blanpain, and F. Haers: Steel Res., 2000, vol.71, pp. 391-95.

    Article  CAS  Google Scholar 

  20. 20.R. Liu, L. Laus, Y. Lee, H. Yin, J. Macino, J. Cottrell, R. Gass, and M. Krug: AISTech-Iron and Steel Technology Conference Proceedings, 2015, vol.2, pp. 2443-53.

    Google Scholar 

  21. 21.H. Barati, M. Wu, A. Kharicha, and A. Ludwig: Metall. Mater. Trans. B, 2019, vol.50, pp. 1428-43.

    Article  Google Scholar 

  22. 22.H. Barati, M. Wu, A. Kharicha, and A. Ludwig: Powder Technol., 2018, vol.329, pp. 181-98.

    Article  CAS  Google Scholar 

  23. 23.B. Hua and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol.32, pp. 707-22.

    Google Scholar 

  24. 24.H. X. Yu, G. S. Zhu, X. H. Wang, J. M. Zhang, and W. J. Wang: Int. J. Min. Met. Mater., 2005, vol.12, pp. 303-7.

    Google Scholar 

  25. 25.L.F. Zhang, Y.F. Wang, and X.J. Zuo: Metall. Mater. Trans. B, 2008, vol.39, pp. 534-50

    Article  CAS  Google Scholar 

  26. S. Cho, S. Kim, R. Chaudhary, B.G. Thomas, H. Shin, and W. Choi: Iron Steel Technol., 2012, vol. 9, pp. 85-95.

    Google Scholar 

  27. 27.L. Sun, Y. Chen, R. Liu, J. Li, and L. An: Ind. Heat., 2012, vol.41, pp. 38-41.

    CAS  Google Scholar 

  28. 28.P.S. Srinivas, A. Singh, J.M. Korath, and A.K. Jana: Ironmaking Steelmaking, 2016, vol.44, pp. 473-85.

    Article  Google Scholar 

  29. 29.Y. Hashimoto, A. Matsui, T. Hayase, and M. Kano: Mater. Trans. B, 2020, vol.51, pp. 581-8.

    Article  Google Scholar 

  30. 30.F.M. White, Fluid Mechanics, Seventh Edition, McGraw-Hill, New York, 2009, pp. 317.

    Google Scholar 

  31. 31.M. Raffel, C.E. Willert, F. Scarano, C.J. Kähler, S.T. Wereley, and J. Kompenhans, Particle Image Velocimetry : A Practical Guide, Third Edition, Springer, Cham, 2017, pp. 49.

    Google Scholar 

  32. 32.C. A. Real-Ramirez, I. Carvajal-Mariscal, F. Sanchez-Silva, F. Cervantes-de-la-Torre, J. Diaz-Montes, and J. Gonzalez-Trejo: Metall. Mater. Trans. B, 2018, vol.49, pp. 1644-57.

    Article  Google Scholar 

  33. 33.C.D. Meinhart, S.T. Wereley, and J.G. Santiago: Exp. Fluids, 1999, vol.27, pp. 414-19.

    Article  Google Scholar 

  34. H. Cui, J. Zhang, J. Liu, W. Su, J. Yan, and F. Wang: Ironmaking & Steelmaking, 2020, pp. 1–10.

  35. 35.H.W. Wang, Fluid mechanics as I understand it, National Defense Industry Press, Beijing, 2019, pp. 232.

    Google Scholar 

  36. 36.B.G. Thomas: Steel Res. Int., 2018, vol.89, pp. 1700312-33.

    Article  Google Scholar 

  37. 37.J. Wang, G.S. Du, and Y.H. Liu: Appl. Mech. Mater., 2014, vol.574, pp. 485-88.

    Article  Google Scholar 

  38. J. Zhou, R.J. Adrian, S. Balachander, and T.M. Kendall: J. Fluid Mech., 1999, vol. 387, pp. 353-96.

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Grant No. 51774031). The authors express their gratitude to the foundation for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 7, 2020. Accepted September 27, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, C., Wang, M. & Bao, Y. Effect of Nozzle Clogging on the Fluid Flow Pattern in a Billet Mold with Particle Image Velocimetry Technology. Metall Mater Trans B 51, 2871–2881 (2020). https://doi.org/10.1007/s11663-020-01996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01996-5

Navigation