Skip to main content
Log in

Cauchy Formalism in the Theory of Acoustic Surface Waves

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

To describe the propagation of acoustic surface waves in an anisotropic layer, a six-dimensional complex formalism is introduced, a Hamiltonian is constructed, an analogue of the Rayleigh dissipative function, and an exponential fundamental matrix. Dispersion equations are obtained for a multilayer plate with different conditions on the boundary surfaces. Examples of the application of the Cauchy formalism to the analysis of the dispersion of Lamb waves are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. W. Strutt (Lord Rayleigh), “On wave propagating along the plane surface of an elastic solid,” Proc. London Math. Soc. 17, 4–11 (1885).

    MathSciNet  Google Scholar 

  2. J. L. Synge, “Elastic waves in anisotropic media,” J. Math. Phys. 35, 323–334 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Stoneley, “The propagation of surface elastic waves in a cubic crystal,” Proc. Roy. Soc. A 232, 447–458 (1955).

    ADS  MathSciNet  MATH  Google Scholar 

  4. A. N. Stroh, “Steady state problems in anisotropic elasticity,” J. Math. Phys. 41, 77–103 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  5. T.C. Lim and G. W. Farnell, “Search for forbidden directions of elastic surface-wave propagation in anisotropic crystals,” J. Appl. Phys. 39, 4319–4325 (1968).

    Article  ADS  Google Scholar 

  6. T. C. Lim and G. W. Farnell, “Character of pseudo surface waves on anisotropic crystals,” J. Acoust. Soc. Am. 45, 845–851 (1969).

    Article  ADS  Google Scholar 

  7. G. W. Farnell, “Properties of elastic surface waves,” Phys. Acoust. 6, 109–166 (1970).

    Article  Google Scholar 

  8. D. M. Barnett and J. Lothe, “Synthesis of the sextic and the integral formalism for dislocations. Green’s functions. and surface waves in anisotropic elastic solids,” Phys. Norv. 7, 13–19 (1973).

    Google Scholar 

  9. D. M. Barnett and J. Lothe, “Consideration of the existence of surface wave (Rayleigh wave) solutions in anisotropic elastic crystals,” J. Phys. Ser. F 4, 671–678 (1974).

    Article  ADS  Google Scholar 

  10. D. M. Barnett and J. Lothe, “An image force theorem for dislocations in anisotropic bicrystals,” J. Phys. Ser. F 4, 1618–1635 (1974).

    Article  ADS  Google Scholar 

  11. J. Lothe and D. M. Barnett, “On the existence of surface wave solutions for anisotropic elastic half-spaces with free surface,” J. Appl. Phys. 47, 428–433 (1976).

    Article  ADS  Google Scholar 

  12. P. Chadwick and G. D. Smith, “Foundations of the theory of surface waves in anisotropic elastic materials,” Adv. Appl. Mech. 17, 303–376 (1977).

    Article  MATH  Google Scholar 

  13. P. Chadwick and D. A. Jarvis, “Surface waves in a prestressed elastic body,” Proc. Roy. Soc. A 366, 517–536(1979) .

    ADS  MathSciNet  MATH  Google Scholar 

  14. P. Chadwick and T. C. T. Ting, “On the structure and invariance of the Barnett–Lothe tensors,” Quart. Appl. Math. 45, 419–427 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. A. Gunderson, D. M. Barnett, and J. Lothe, “Rayleigh wave existence theory: a supplementary remark,” Wave Motion 9, 319–321 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Stoneley, “Elastic waves at the surface of separation of two solids,” Proc. Roy. Soc. Lond. A 106, 416–428 (1924).

    Article  ADS  MATH  Google Scholar 

  17. A. E. H. Love, Some Problems of Geodynamics (Cambridge Univ. Press, Cambridge, 1911), pp. 165–178.

    MATH  Google Scholar 

  18. K. Sezawa and K. Kanai, “The range of possible existence of Stoneley waves and some related problems,” Bull. Earthquake Res. Inst. Tokyo 17, 1–8 (1939) .

    Google Scholar 

  19. L. Cagniard, Reflexion rt Refraction des Ondes Seismique Progressive (These) (Gauthier-Villars & Cie, Paris, 1939).

    Google Scholar 

  20. J. G. Scholte, “The range of existence of Rayleigh and Stoneley waves,” Mont. Not. Roy. Astron. Soc.: Geogphys. Suppl. 5, 120–126 (1947).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. P. Chadwick and P. Borejko, “Existence and uniqueness of Stoneley waves,” Geophys. J. Int. 118, 279–284 (1994).

    Article  ADS  Google Scholar 

  22. P. R. Sengupta and S. Nath, “Surface waves in fiber-reinforced anisotropic elastic media,” Sadhana 26, 363–370 (2001).

    Article  Google Scholar 

  23. S. V. Kuznetsov, “Love waves in layered anisotropic media,” J. Appl. Math. Mech. 70 (1), 116-127 (2006).

    Article  MathSciNet  Google Scholar 

  24. S. V. Kuznetsov, “SH-waves in laminated plates,” Quart. Appl. Math. 64, 153–165 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Lamb, “On waves in an elastic plate,” Proc. Roy. Soc. A 93, 114–128 (1917).

    ADS  MATH  Google Scholar 

  26. G. R. Liu, J. Tani, K. Watanabe, and T. Ohyoshi, “Lamb wave propagation in anisotropic laminates,” J. Appl. Mech. 57, 923–929 (1990).

    Article  ADS  Google Scholar 

  27. W. Lin and L. M. Keer, “A study of Lamb waves in anisotropic plates,” J. Acoust. Soc. Am. 92, 888–894 (1992).

    Article  ADS  Google Scholar 

  28. N. Guo and P. Cawley, “Lamb wave propagation in composite laminates and its relationship with acoustoultrasonics”, NDT & E Int. 26 (2), 75–84 (1993).

    Article  Google Scholar 

  29. D. E. Chimenti, “Lamb waves in microstructured plates,” Ultrasonics 32, 255–260 (1994).

    Article  Google Scholar 

  30. S. V. Kuznetsov, “Subsonic Lamb waves in anisotropic plates,” Quart. Appl. Math. 60, 577–587 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  31. W. T. Thomson, “Transmission of elastic waves through a stratified solid medium,” J. Appl. Phys. 21 (2), 89–93 (1950).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. N. A. Haskell, “Dispersion of surface waves on multilayered media,” Bull. Seismol. Soc. Am. 43 (1), 17–34 (1953).

    Google Scholar 

  33. L. Knopoff, “A matrix method for elastic wave problems,” Bull. Seismol. Soc. Am. 54 (1), 431–438 (1964).

    Google Scholar 

  34. A. K. Mal and L. Knopoff, “A differential equation for surface waves in layers with varying thickness,” J. Math. Anal. Appl. 21 (2), 431–441 (1968).

    Article  MATH  Google Scholar 

  35. S. V. Kuznetsov, “Surface waves of non-Rayleigh type,” Quart. Appl. Math. 61 (3), 575–582 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  36. C. D. Meyer, Matrix Analysis and Applied Linear Algebra (Soc. Ind. Appl. Math, Philadelphia, 2000).

    Book  Google Scholar 

  37. T. C. T. Ting, Anisotropic Elasticity: Theory and Applications (Oxford University Press, New York, 1996).

    MATH  Google Scholar 

  38. T. C. T. Ting, “A modified Lekhnitskii formalism a la Stroh for anisotropic elasticity and classifications of the 6X6 matrix N,” Proc. Roy. Soc. London A 455, 69–89 (1999).

    Article  ADS  MATH  Google Scholar 

  39. S. V. Kuznetsov, “Lamb waves in functionally graded plates with transverse inhomogeneity,” Acta Mech. 229, 4131–4139 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. S. V. Kuznetsov, “Cauchy formalism for Lamb waves in functionally graded plates,” J. Vibr. Contr. 25 (6), 1227–1232 (2019).

    Article  MathSciNet  Google Scholar 

  41. S. V. Kuznetsov, “Abnormal dispersion of flexural Lamb waves in functionally graded plates,” ZAMP 70 (89), 1–10 (2019).

    MathSciNet  MATH  Google Scholar 

  42. M. E. Gurtin, Handbuch der Physik. Vol. VIa/2: The Linear Theory of Elasticity (Springer-Verlag, Berlin, 1076).

  43. V. V. Mokryakov, “Maxima of the stresses in the longitudinal Pochhammer-Chree waves,” Mech. Solids 54 (7), 1063–1075 (2019).

    Article  ADS  Google Scholar 

  44. A. V. Ilyashenko, “Pochhammer-Cree longitudinal waves: anomalous polarization,” Mech. Solids 54 (4), 598–606 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

The author thanks the Russian Foundation for Basic Research (grant nos. 20-08-00419, 18-58-41001, and 19-01-00100) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kuznetsov.

Additional information

Translated by I. K. Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.V. Cauchy Formalism in the Theory of Acoustic Surface Waves. Mech. Solids 55, 482–489 (2020). https://doi.org/10.3103/S0025654420040068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420040068

Keywords:

Navigation