Skip to main content
Log in

Comparative Genomic and Transcriptomic Analyses Revealed Twenty-Six Candidate Genes Involved in the Air-Breathing Development and Function of the Bighead Catfish Clarias macrocephalus

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The bighead catfish (Clarias macrocephalus) and channel catfish (Ictalurus punctatus) are freshwater species in the Siluriformes order. C. macrocephalus has both gills and modified gill structures serving as an air-breathing organ (ABO), while I. punctatus does not possess such an organ, and cannot breathe in air, providing an excellent model for studying the molecular basis of ABO development in teleost fish. To investigate the critical time window for the development of air-breathing function, seven development stages were selected based on hypoxia challenge results, and RNA-seq was performed upon C. macrocephalus to compare with the non-air-breathing I. punctatus. Five-hundred million reads were generated and 25,239 expressed genes were annotated in C. macrocephalus. Among those, 8675 genes were differentially expressed across developmental stages. Comparative genomic analysis identified 1458 C. macrocephalus specific genes, which were absent in I. punctatus. Gene network and protein-protein interaction analyses identified 26 key hub genes involved in the air-breathing function. Three top candidate genes, mb, ngb, hbae, are mainly associated with oxygen carrying, oxygen binding, and heme binding activities. Our study provides a rich data set for exploring the genomic basis of air-breathing function in C. macrocephalus and offers insights into the adaption to hypoxic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw RNA-seq data is available at NCBI GEO (Gene Expression Omnibus) databases under the accession number GSE151993.

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M (2012) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995

    Article  Google Scholar 

  • Bas A, Forsberg G, Hammarström S, Hammarström ML (2004) Utility of the housekeeping genes 18S rRNA, β-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand J Immunol 59:566–573

  • Belão TC, Leite CAC, Florindo LH, Kalinin AL, Rantin FT (2011) Cardiorespiratory responses to hypoxia in the African catfish, Clarias gariepinus (Burchell 1822), an air-breathing fish. J Comp Physiol B 181:905–916

    Article  Google Scholar 

  • Bentmann A, Schmidt M, Reuss S, Wolfrum U, Hankeln T, Burmester T (2005) Divergent distribution in vascular and avascular mammalian retinae links neuroglobin to cellular respiration. J Biol Chem 280:20660–20665

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  • Brauner C, Matey V, Wilson J, Bernier N, Val A (2004) Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon. J Exp Biol 207:1433–1438

    Article  CAS  Google Scholar 

  • Bruton MN (1979) The survival of habitat desiccation by air breathing clariid catfishes. Environ Biol Fish 4:273–280

    Article  Google Scholar 

  • Chatchaiphan S, Srisapoome P, Kim J-H, Devlin RH, Na-Nakorn U (2017) De novo transcriptome characterization and growth-related gene expression profiling of diploid and triploid bighead catfish (Clarias macrocephalus Günther, 1864). Mar Biotechnol 19:36–48

    Article  CAS  Google Scholar 

  • Dunham RA (2011) Aquaculture and fisheries biotechnology: genetic approaches 2nd edition. CABI Publishing, Wallingford 504p

    Book  Google Scholar 

  • Duong T-Y, Tan MH, Lee YP, Croft L, Austin CM (2020) Dataset for genome sequencing and de novo assembly of the Vietnamese bighead catfish (Clarias macrocephalus Günther, 1864). Data Brief 31:105861

    Article  Google Scholar 

  • Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16:157

    Article  Google Scholar 

  • Fishbase (2020) URL: https://www.fishbase.se/summary/Clarias-macrocephalus.html. Accessed 10 June 2020

  • Gabriel NN, Qiang J, Ma XY, He J, Xu P, Omoregie E (2017) Sex-reversal effect of dietary Aloe vera (Liliaceae) on genetically improved farmed Nile tilapia fry. N Am J Aquac 79:100–105

    Article  Google Scholar 

  • Graham JB, Lee HJ (2004) Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition? Physiol Biochem Zool 77:720–731

    Article  Google Scholar 

  • Graham JB, Kramer DL, Pineda E (1978) Comparative respiration of an air-breathing and a non-air-breathing characoid fish and the evolution of aerial respiration in characins. Physiol Zool 51:279–288

    Article  Google Scholar 

  • Grillitsch S, Medgyesy N, Schwerte T, Pelster B (2005) The influence of environmental PO2 on hemoglobin oxygen saturation in developing zebrafish Danio rerio. J Exp Biol 208:309–316

    Article  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  Google Scholar 

  • Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs TL, Roesner A, Schmidt M, Weich B, Wystub S (2005) Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J Inorg Biochem 99:110–119

    Article  CAS  Google Scholar 

  • Hsia CC, Schmitz A, Lambertz M, Perry SF, Maina JN (2013) Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 3:849–915

    PubMed  PubMed Central  Google Scholar 

  • Hsieh S-TT (2010) A locomotor innovation enables water-land transition in a marine fish. PLoS One 5:e11197

    Article  Google Scholar 

  • Islam MN, Islam MS, Alam MS (2007) Genetic structure of different populations of walking catfish (Clarias batrachus L.) in Bangladesh. Biochem Genet 45:647–662

    Article  CAS  Google Scholar 

  • Johansen K (1970) Air breathing in fishes. In: Hoar WS, Randall DJ (eds) Fish Physiology. Academic Press, New York, pp 361–411

  • Kumar L, Futschik ME (2007) Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2:5–7

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  Google Scholar 

  • Li N, Bao L, Zhou T, Yuan Z, Liu S, Dunham R, Li Y, Wang K, Xu X, Jin Y, Zeng Q, Gao S, Fu Q, Liu Y, Yang Y, Li Q, Meyer A, Gao D, Liu Z (2018) Genome sequence of walking catfish (Clarias batrachus) provides insights into terrestrial adaptation. BMC Genomics 19:952

    Article  CAS  Google Scholar 

  • Liem KF, Eclancher B, Fink WL (1984) Aerial respiration in the banded knife fish Gymnotus carapo (Teleostei: Gymnotoidei). Physiol Zool 57:185–195

    Article  Google Scholar 

  • Liu ZJ, Liu SK, Yao J, Bao LS, Zhang JR, Li Y, Jiang C, Sun LY, Wang RJ, Zhang Y, Zhou T, Zeng QF, Fu Q, Gao S, Li N, Koren S, Jiang YL, Zimin A, Xu P, Phillippy AM, Geng X, Song L, Sun FY, Li C, Wang XZ, Chen A, Jin YL, Yuan ZH, Yang YJ, Tan SX, Peatman E, Lu JQ, Qin ZK, Dunham RA, Li ZX, Sonstegard T, Feng JB, Danzmann RG, Schroeder S, Scheffler B, Duke MV, Ballard L, Kucuktas H, Kaltenboeck L, Liu HX, Armbruster J, Xie YJ, Kirby ML, Tian Y, Flanagan ME, Mu WJ, Waldbieser GC (2016) The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun 7:1–13

    CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  Google Scholar 

  • Luo W, Cao X, Xu X, Huang S, Liu C, Tomljanovic T (2016) Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach. Misgurnus anguillicaudatus. Sci Rep 6:31845

    Article  CAS  Google Scholar 

  • Mcmahon BR, Burggren WW (1987) Respiratory physiology of intestinal air breathing in the teleost fish Misgurnus anguillicaudatus. J Exp Biol 133:371–393

    Google Scholar 

  • Motta PJ (1984) Mechanics and functions of jaw protrusion in teleost fishes: a review. Copeia 1984:1–18

    Article  Google Scholar 

  • Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7(2):230619

    Article  Google Scholar 

  • Roesner A, Hankeln T, Burmester T (2006) Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). J Exp Biol 209:2129–2137

    Article  CAS  Google Scholar 

  • Saha N, Ratha BK (2007) Functional ureogenesis and adaptation to ammonia metabolism in Indian freshwater air-breathing catfishes. Fish Physiol Biochem 33:283–295

    Article  CAS  Google Scholar 

  • Shang M, Su B, Perera DA, Alsaqufi A, Lipke EA, Cek S, Dunn DA, Qin Z, Peatman E, Dunham RA (2018) Testicular germ line cell identification, isolation, and transplantation in two North American catfish species. Fish Physiol Biochem 44:717–733

  • Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P (2016) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368

  • Teugels GG, Adriaens D (2003) Taxonomy and phylogeny of Clariidae: an overview. Catfishes 1:465–487

    Google Scholar 

  • Tian R, Losilla M, Lu Y, Yang G, Zakon H (2017) Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance. BMC Evol Biol 17:51

    Article  Google Scholar 

  • Tiedke J, Gerlach F, Mitz SA, Hankeln T, Burmester T (2011) Ontogeny of globin expression in zebrafish (Danio rerio). J Comp Physiol B 181:1011–1021

    Article  CAS  Google Scholar 

  • Untergasser A, Cutcutache L, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

  • Vlecken DH, Testerink J, Ott EB, Sakalis PA, Jaspers RT, Bagowski CP (2009) A critical role for myoglobin in zebrafish development. Int J Dev Biol 53:517–524

    Article  CAS  Google Scholar 

  • Wawrowski A, Gerlach F, Hankeln T, Burmester T (2011) Changes of globin expression in the Japanese medaka (Oryzias latipes) in response to acute and chronic hypoxia. J Comp Physiol B 181:199–208

    Article  CAS  Google Scholar 

  • Weller P, Price M, Isenberg H, Edwards Y, Jeffreys A (1986) Myoglobin expression: early induction and subsequent modulation of myoglobin and myoglobin mRNA during myogenesis. Mol Cell Biol 6:4539–4547

    Article  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA (2003) Myoglobin function reassessed. J Exp Biol 206:2011–2020

    Article  CAS  Google Scholar 

  • Yu G, Wang L-G, Han Y, He Q-Y (2012) ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ma, Xiaoli, a graduate student at School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, was supported by the China Scholarship Council. X.W. is supported by Alabama Agricultural Experiment Station Enabling Grant, National Science Foundation EPSCoR RII Track-4 Research Fellowship (NSF OIA 1928770), the USDA National Institute of Food and Agriculture (Hatch project 1018100), and a generous laboratory start-up fund from Auburn University College of Veterinary Medicine. The authors would like to thank the Auburn Hopper supercomputer clusters for computational support.

Funding

This work was supported by an IGP grant (no. 180302) from the Auburn University Office of Vice President for Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Wang or Rex A. Dunham.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 567 kb)

ESM 2

(XLSX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Su, B., Bangs, M. et al. Comparative Genomic and Transcriptomic Analyses Revealed Twenty-Six Candidate Genes Involved in the Air-Breathing Development and Function of the Bighead Catfish Clarias macrocephalus. Mar Biotechnol 23, 90–105 (2021). https://doi.org/10.1007/s10126-020-10005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-020-10005-4

Keywords

Navigation