Skip to main content
Log in

Inkjet-printed low-cost colorimetric tickets for TNT detection in contaminated soil

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A simple colorimetric detection method for 2,4,6-trinitrotoluene (TNT) in contaminated soil has been developed. Procedurally, a TNT responsive chromogenic reagent was inkjet printed on commercially available photo paper, and the resulting colorimetric ticket was laminated with a precut patterned film to make a bilayer microfluidic sensor. For the TNT detection experiments, a drop of TNT solution was placed on the center of the prepared sensor. Color measurement of the sensor with a photo scanner showed a wide detection range of TNT, ranging from 14 parts per million (ppm), which is below its residential screening level (∼21 ppm) to 7,200 ppm. To further demonstrate its efficacy, TNT spiked soil samples were extracted with acetone and evaluated with the developed sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wilbrand, Eur. J. Org. Chem., 128, 178 (1863).

    Google Scholar 

  2. J. M. Dewey, Proc. Royal Soc. London, 279, 366 (1964).

    Google Scholar 

  3. J. A. Wickham Jr., Military explosives, Headquaters, Department of the Army, Washington, D.C. (1984).

    Google Scholar 

  4. W. D. Cocroft, in Frontline and factory: Comparative perspectives on the chemical industry at war, 1941–1924, R. Macleod and J. A. Johnson Eds., Springer, Dordrecht (2006).

  5. H. W. Nelson, Logistics in World War II, Center of Military History, U.S. Army, Washington, D.C. (1993).

    Google Scholar 

  6. S. Taylor, A. Hewitt, J. Lever, C. Hayes, L. Perovich, P. Thorne and C. Daghlian, Chemosphere, 55, 357 (2004).

    CAS  PubMed  Google Scholar 

  7. T. F. Jenkins, S. R. Bigl, A. D. Hewitt, J. L. Clausen, H. D. Craig, M. E. Walsh, R. Martel, K. Nieman, S. Taylor and M. R. Walsh, EPA federal facilities forum issue paper: Site characterization for munitions constituents, Environmental Protection Agency, Washington, D.C. (2012).

    Google Scholar 

  8. P. S. Hovatter, S. S. Talmage, D. M. Opresko and R. H. Ross, Ecotoxicity of nitroaromatics to aquatic and terrestrial species at army superfund sites, STP1317-EB Environmental toxicology and risk assessment: modeling and risk assessment sixth volume, F. Dwyer, T. Doane and M. Hinman Ed., 117, ASTM international, West Conshohocken, Pennsylvania (1997).

  9. T. A. Lewis, D. A. Newcombie and R. L. Crawford, J. Environ. Manage., 70, 291 (2004).

    PubMed  Google Scholar 

  10. J. M. Brannon, T. F. Jenkins, L. V. Parker, P. Deliman, J. A. Gerald, C. Ruiz, B. Porter and W. M. Davis, Procedures for determining integrity of UXO and explosives soil contamination at firing ranges, U. S. Army Corps of Engineers, Washington, D.C. (2000).

    Google Scholar 

  11. J. Pichtel, Appl. Environ. Soil Sci., 2012, 1 (2012).

    Google Scholar 

  12. K. Li, C. D. Sherman, J. Beaumont and M. S. Sandy, Evidence on the carcinogenicity of 2,4,6-trinitrotoluene, The Office of Environmental Health Hazard Assessment, Sacramento, California (2010).

    Google Scholar 

  13. P. Richter-Torres, A. Dorsey and C. S. Hodes, Toxicological profile for 2,4,6-trinitrotoluene, U. S. Department of Health and Human Services, Atlanta, Georgia (1995).

    Google Scholar 

  14. M. Cooke, Technical fact sheet-2,4,6-trinitrotoluene, Environmental Protection Agency, Washington, D.C. (2017).

    Google Scholar 

  15. K. V. Stackleberg, C. Amos, C. Butler, T. Smith, J. Famely, M. McArdle, B. Southworth and J. Steevens, Screening level ecological risk assessments of some military munitions and obscurant-related compounds for selected threatened and endangered species, U. S. Army Corps of Engineers, Washington, D.C. (2006).

    Google Scholar 

  16. D. Kalderis, A. L. Juhasz, R. Boopathy and S. Comfort, Pure Appl. Chem., 83, 1407 (2011).

    CAS  Google Scholar 

  17. P. Das, Chemically catalyzed phytoremediation of 2,4,6-trinitrotoluene (TNT) contaminated soil by vetiver grass, Ph. D. Dissertation, Montclair State University, Upper Montclair, New Jersey (2015).

  18. J. Gao, X. Chen, S. Chen, H. Meng, Y. Wang, C. Li and L. Feng, Anal. Chem., 91, 13675 (2019).

    CAS  PubMed  Google Scholar 

  19. W. Zhang, Z. Wu, J. Hu, Y. Cao, J. Guo, M. Long, H. Duan and D. Jia, Sens. Actuators B Chem., 304, 127233 (2020).

    CAS  Google Scholar 

  20. X. Tian, H. Peng, Y. Li, C. Yang, Z. Zhou and Y. Wang, Sens. Actuators B Chem., 243, 1002 (2017).

    CAS  Google Scholar 

  21. A. Pesenti, R. V. Taudte, B. McCord, P. Doble, C. Roux and L. Blanes, Anal. Chem., 86, 4707 (2014).

    CAS  PubMed  Google Scholar 

  22. M. O. Salles, G. N. Meloni, W. R. de Araujo and T. R. L. C. Paixao, Anal. Methods, 6, 2047 (2014).

    CAS  Google Scholar 

  23. K. L. Peters, I. Corbin, L. M. Kaufman, K. Zreibe, L. Blanes and B. R. McCord, Anal. Methods, 7, 63 (2015).

    CAS  Google Scholar 

  24. N. López-Ruiz, M. M. Erenas, I. de Orbe-Pay, L. F. Capitán-Vallvey, A. J. Palma and A. Martínez-Olmos, J. Sens., 2016, 7087013 (2016).

    Google Scholar 

  25. T. Hu, W. Sang, K. Chen, H. Gu, Z. Ni and S. Liu, Mater. Chem. Front., 3, 193 (2019).

    CAS  Google Scholar 

  26. N. Tang, L. Mu, H. Qu, Y. Wang, X. Duan and M. A. Reed, ACS Appl. Mater. Interfaces, 9, 14445 (2017).

    CAS  PubMed  Google Scholar 

  27. C. Liu, W. Zhang, Y. Zhao, C. Lin, K. Zhou, Y. Li and G. Li, ACS Appl. Mater. Interfaces, 11, 21078 (2019).

    CAS  PubMed  Google Scholar 

  28. N. A. Rakow and K. S. Suslick, Nature, 406, 710 (2000).

    CAS  PubMed  Google Scholar 

  29. S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto and K. S. Suslick, Nat. Chem., 1, 562 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. H. Lin, M. Jang and K. S. Suslick, J. Am. Chem. Soc., 133, 16786 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. E. Erçaĝ, A. Űzer and R. Apak, Talanta, 78, 772 (2009).

    PubMed  Google Scholar 

  32. M. J. Kangas, R. M. Burks, J. Atwater, R. M. Lukowicz, P. Williams and A. E. Holmes, Crit. Rev. Anal. Chem., 47, 138 (2017).

    CAS  PubMed  Google Scholar 

  33. A. W. Martinez, S. T. Phillips and G. M. Whitesides, Anal. Chem., 82, 3 (2010).

    CAS  PubMed  Google Scholar 

  34. E. Carrilho, A. W. Martinez and G. M. Whitesides, Anal. Chem., 81, 7091 (2009).

    CAS  PubMed  Google Scholar 

  35. A. Berliner, M.-G. Lee, Y. Zhang, S. H. Park, R. Martino, P. A. Rhodes, G.-R. Yi and S. H. Lim, RSC Adv., 4, 10672 (2014).

    CAS  Google Scholar 

  36. T. Akyazi, L. Basabe-Desmonts and F. Benito-Lopez, Anal. Chim. Acta, 1001, 1 (2018).

    CAS  PubMed  Google Scholar 

  37. S. Erik, Printability and ink-coating interactions in inkjet printing, Ph. D. Dissertation, Karlstad University, Karlstad, Sweden (2007).

  38. J. R. Askim, Z. Li, M. K. LaGasse, J. M. Rankin and K. S. Suslick, Chem. Sci., 7, 199 (2016).

    CAS  PubMed  Google Scholar 

  39. R. Foster and R. K. Mackie, Tetrahedron, 18, 1131 (1962).

    CAS  Google Scholar 

  40. C. C. Porter, Anal. Chem., 27, 805 (1955).

    CAS  Google Scholar 

  41. J. H. Ward Jr., J. Am. Stat. Assoc., 58, 236 (1963).

    Google Scholar 

  42. J. L. Janovsky, Chem. Ber., 24, 971 (1891).

    Google Scholar 

  43. J. Von Meisenheimer, Justus Liebigs Ann Chem., 323, 205 (1902).

    Google Scholar 

  44. C. L. Jackson and R. B. Earle, Am. Chem. J., 29, 89 (1903).

    CAS  Google Scholar 

  45. E. Buncel, A. R. Norris and K. E. Russell, Q. Rev. Chem. Soc., 22, 123 (1968).

    CAS  Google Scholar 

  46. D.-W. Jung, K. J. Park, S. Lee, J. Kim, G. Lee and G.-R. Yi, Korean J. Chem. Eng., 35, 2138 (2018).

    CAS  Google Scholar 

  47. V. S. Patil, M.-G. Lee, J. Yun, J.-S. Lee, S. H. Lim and G.-R. Yi, Langmuir, 34, 13014 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We acknowledge support from the National Research Foundation of Korea (NRF) (NRF-2017R1A5A1070259 and 2018M3D1 A1058624).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung H. Lim or Gi-Ra Yi.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MG., Yoo, HW., Lim, S.H. et al. Inkjet-printed low-cost colorimetric tickets for TNT detection in contaminated soil. Korean J. Chem. Eng. 37, 2171–2178 (2020). https://doi.org/10.1007/s11814-020-0627-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0627-x

Keywords

Navigation