Skip to main content
Log in

An effort for resolving redundancy of a multi-finger robotic hand in straight-line motions

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Multi-finger robotic hands are the main robotic invention for providing assistive movement therapy in hand rehabilitation. In this paper, the concept of task priority is adopted in order to solve the redundancy resolution of a robotic hand. The redundancy parameter has been used to design the inverse kinematic model in order to determine the joint angles when the finger moves to perform the initial subtask of tracing the desired trajectory while considering the secondary subtask of increasing the instantaneous manipulability. Five different human subjects performed the experimentation where the index finger and thumb are allowed to follow the three desired motion trajectories. Markers are placed on the finger joints in order to track the motion and obtain the finger joint angles. Further, the experimental joint angles are compared with those obtained from inverse kinematics. The index finger and thumb behaviour is analysed based on the redundancy resolution scheme. It has been observed that the optimized root-mean-square error remains insignificant of the different subjects performing the motion and the type of motion trajectories adopted for the index finger as well as the thumb. Thereafter, the proposed scheme is applied to a four-finger tendon-actuated robotic hand and it has been observed that the scheme can be applied to solve the redundancies of any robotic hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Razavian RS, Ghannadi B, Mehrabi N, Charlet M, McPhee J (2018) Feedback control of functional electrical stimulation for 2-D arm reaching movements. IEEE Trans Neural Syst Rehabil Eng 26(10):2033–2043

    Article  Google Scholar 

  2. Valero-Cuevas FJ (2009) A mathematical approach to the mechanical capabilities of limbs and fingers. Progress in motor control. Springer, Berlin, pp 619–633

    Chapter  Google Scholar 

  3. Valero-Cuevas FJ (2005) An integrative approach to the biomechanical function and neuromuscular control of the fingers. J Biomech 38(4):673–684

    Article  Google Scholar 

  4. Valero-Cuevas FJ, Hoffmann H, Kurse MU, Kutch JJ, Theodorou EA (2009) Computational models for neuromuscular function. IEEE Rev Biomed Eng 2:110–135

    Article  Google Scholar 

  5. Valero-Cuevas FJ, Johanson ME, Towles JD (2003) Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J Biomech 36(7):1019–1030

    Article  Google Scholar 

  6. Yokogawa R, Hara K (2004) Manipulabilities of the index finger and thumb in three tip-pinch postures. J Biomech Eng 126(2):212–219

    Article  Google Scholar 

  7. Yokogawa R, Hara K (2002) Measurement of distribution of maximum index-fingertip force in all directions at fingertip in flexion/extension plane. J Biomech Eng 124(3):302–307

    Article  Google Scholar 

  8. Yoshikawa T (1984) Analysys and control of robot manipulators with redundancy. Robot Res First Int Syposium 1984:735–747

    Google Scholar 

  9. Yoshikawa T (1985) Manipulability of robotic mechanisms. Int J Robot Res 4(2):3–9

    Article  Google Scholar 

  10. Chiacchio P, Chiaverini S, Sciavicco L, Siciliano B (1991) Global task space manipulability ellipsoids for multiple-arm systems. IEEE Transactions on Robotics and Automation 7(5):678–685

    Article  Google Scholar 

  11. Cui L, Dai JS (2011) Posture, workspace, and manipulability of the metamorphic multifingered hand with an articulated palm. Journal of mechanisms and robotics 3 (2)

  12. Daoud N, Gazeau J-P, Zeghloul S, Arsicault M (2011) A fast grasp synthesis method for online manipulation. Robot Auton Syst 59(6):421–427

    Article  Google Scholar 

  13. Sobh TM, Elkady AY, Mohammed M (2009) A New Algorithm for Measuring and Optimizing the Manipulability Index.

  14. Cobos S, Ferre M, Uran MS, Ortego J, Pena C Efficient human hand kinematics for manipulation tasks. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. IEEE, pp 2246–2251

  15. Chiu SL (1988) Task compatibility of manipulator postures. Int J Robot Res 7(5):13–21

    Article  Google Scholar 

  16. Neha E, Suhaib M, Mukherjee S (2017) Motion planning for a four-fingered robotic hand. In: Proceedings of the Advances in Robotics. pp 1–5

  17. Nakamura Y (1990) Advanced robotics: redundancy and optimization. Addison-Wesley Longman Publishing Co., Inc., Boston

    Google Scholar 

  18. Faroni M, Beschi M, Visioli A, Tosatti LM (2016) A global approach to manipulability optimisation for a dual-arm manipulator. In: 2016 IEEE 21st international conference on emerging technologies and factory automation (ETFA), IEEE, pp 1–6

  19. Siciliano B (1990) Kinematic control of redundant robot manipulators: a tutorial. J Intell Rob Syst 3(3):201–212

    Article  Google Scholar 

  20. Liegeois A (1977) Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans Syst Man Cybern 7(12):868–871

    Article  MATH  Google Scholar 

  21. Flacco F, De Luca A, Khatib O (2015) Control of redundant robots under hard joint constraints: saturation in the null space. IEEE Trans Rob 31(3):637–654

    Article  Google Scholar 

  22. Faroni M, Beschi M, Tosatti LM, Visioli A (2017) A predictive approach to redundancy resolution for robot manipulators. IFAC-PapersOnLine 50(1):8975–8980

    Article  Google Scholar 

  23. Singla A, Kulkarni P, Kumar S (2007) Dasgupta B Redundancy control of robot manipulators using task priority. In: International conference on advances in control and optimization of Dynamical systems, pp 72–78

  24. Nakamura Y, Hanafusa H, Yoshikawa T (1987) Task-priority based redundancy control of robot manipulators. Int J Robot Res 6(2):3–15

    Article  Google Scholar 

  25. Pfeiffer F, Johanni R (1987) A concept for manipulator trajectory planning. IEEE J Robot Autom 3(2):115–123

    Article  Google Scholar 

  26. Haddad M, Chettibi T, Hanchi S, Lehtihet H (2007) A random-profile approach for trajectory planning of wheeled mobile robots. Eur J Mech A/Solids 26(3):519–540

    Article  MathSciNet  MATH  Google Scholar 

  27. Boryga M, Graboś A (2009) Planning of manipulator motion trajectory with higher-degree polynomials use. Mech Mach Theory 44(7):1400–1419

    Article  MATH  Google Scholar 

  28. Biagiotti L, Melchiorri C (2010) B-spline based filters for multi-point trajectories planning. In: 2010 IEEE International Conference on Robotics and Automation, IEEE, pp 3065–3070

  29. Xiaoqing G, Jidong W Trajectory planning theory and method of industrial robot. In: 2011 3rd International Conference on Computer Research and Development, 2011. IEEE, pp 340–343

  30. Chen Y, Li L, Ji X (2014) Smooth and accurate trajectory planning for industrial robots. Adv Mech Eng 6:342137

    Article  Google Scholar 

  31. Belić JJ, Faisal AA (2011) The structured variability of finger coordination in daily tasks. BMC Neurosci 12(1):P102

    Article  Google Scholar 

  32. Hu D, Ren L, Howard D, Zong C (2014) Biomechanical analysis of force distribution in human finger extensor mechanisms. BioMed Research International 2014

  33. Friedman J, Flash T (2009) Trajectory of the index finger during grasping. Exp Brain Res 196(4):497–509

    Article  Google Scholar 

  34. Hollerbach J, Suh K (1987) Redundancy resolution of manipulators through torque optimization. IEEE J Robot Autom 3(4):308–316

    Article  Google Scholar 

  35. Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703

    Article  Google Scholar 

  36. Kim B-H (2008) An Interphalangeal coordination-based joint motion planning for humanoid fingers: experimental verification. Int J Control Autom Syst 6(2):234–242

    Google Scholar 

  37. Secco EL, Visioli A, Magenes G (2004) Minimum jerk motion planning for a prosthetic finger. J Robot Syst 21(7):361–368

    Article  MATH  Google Scholar 

  38. Arkenbout EA, De Winter JC, Breedveld P (2015) Robust hand motion tracking through data fusion of 5DT data glove and nimble VR Kinect camera measurements. Sensors 15(12):31644–31671

    Article  Google Scholar 

  39. Lippiello V, Ruggiero F, Villani L (2009) Inverse kinematics for object manipulation with redundant multi-fingered robotic hands. Robot motion and control 2009. Springer, Berlin, pp 255–264

    Chapter  Google Scholar 

  40. El-Sawah A, Georganas ND, Petriu EM Finger inverse kinematics using error model analysis for gesture enabled navigation in virtual environments. In: 2006 IEEE International Workshop on Haptic Audio Visual Environments and their Applications (HAVE 2006), 2006. IEEE, pp 34–39

  41. Mannepalli S, Dutta A, Saxena A (2010) A multi-objective GA based algorithm for 2D form and force closure grasp of prismatic objects. Int J Robot Autom 25(2):142

    Google Scholar 

  42. Weise T (2009) Global optimization algorithms-theory and application. Self-Published Thomas Weise

  43. Joseph FOM, Behera L, Tamei T, Shibata T, Dutta A, Saxena A (2017) On redundancy resolution of the human thumb, index and middle fingers in cooperative object translation. Robotica 35(10):1992–2017

    Article  Google Scholar 

  44. Orlando MF, Dutta A, Saxena A, Behera L, Tamei T, Shibata T (2013) Manipulability analysis of human thumb, index and middle fingers in cooperative 3D rotational movements of a small object. Robotica 31(5):797–809

    Article  Google Scholar 

  45. Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, Ugurbil K (2002) Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125(4):773–788

    Article  Google Scholar 

  46. Carey JR, Durfee WK, Bhatt E, Nagpal A, Weinstein SA, Anderson KM, Lewis SM (2007) Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke. Neurorehabilit Neural Repair 21(3):216–232

    Article  Google Scholar 

  47. Lum PS, Godfrey SB, Brokaw EB, Holley RJ, Nichols D (2012) Robotic approaches for rehabilitation of hand function after stroke. Am J Phys Med Rehabil 91(11):S242–S254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eram Neha.

Additional information

Technical Editor: Adriano Almeida Gonçalves Siqueira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neha, E., Orlando, M.F., Suhaib, M. et al. An effort for resolving redundancy of a multi-finger robotic hand in straight-line motions. J Braz. Soc. Mech. Sci. Eng. 42, 600 (2020). https://doi.org/10.1007/s40430-020-02684-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02684-w

Keywords

Navigation