Skip to main content
Log in

Fast responsive thermally stable silica microspheres for sensing evaluation: sol–gel approach

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Cetyltrimethylammonium bromide (CTAB) micelle-templated mesoporous SiO2 particles (MSPs) are synthesized by sol–gel method. The CTAB templated SiO2 particles (SPs) possessed spherical structure with low average surface roughness (Ra) 1 nm. The CTAB template is effectively removed from SPs by 400 °C heat treatment without any cracks and disruption of the bonding between the functional groups and the SiO2 surface. After CTAB template removal, SiO2 microspheres (SMSs) possessed high surface area 640 m2/g, pore radius 10 nm, and Ra ~ 4.4 nm, making them highly attractive for sensing. Thermal gravimetric analysis (TGA) confirmed that SMSs are thermally stable, showing 0.7% weight loss after 429 °C temperature. Phenol red immobilized SMSs show large pKa value 8.1 at 560 nm. Good repeatability, no leaching traces, and fast response time ~0.09 s in basic media suggested that proposed material has potential for opto-chemical sensing/photonic applications.

Highlights

  • Cetyltrimethylammonium bromide assisted mesoporous silica particles were synthesized by sol–gel method.

  • Thermally stable mesoporous silica microspheres (SMSs) possessed high surface area 640 m2/g, and high surface roughness 4.4 nm.

  • SMSs were observed to be thermally stable by 0.7% weight loss after 429 °C temperature.

  • Phenol red immobilized SMSs showed opto-chemical response with large pKa value 8.1 at 560 nm.

  • Low-temperature based SMSs showed good repeatability without any leaching response and fast response time ~0.09.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Islam S, Bakhtiar H, Bidin N, Salim AA, Riaz S, Krishnan G, Naseem S (2018) Crack-free high surface area silica-titania nanocomposite coating as opto-chemical sensor device. Sens Actuators A 270:153–161

    Article  CAS  Google Scholar 

  2. Rodrigues CF, Reis CA, Moreira AF, Ferreira P, Correi IJ (2019) Optimization of gold core-mesoporous silica shell functionalization with TPGS and PEI for cancer therapy. Microporous Mesoporous Mater 285:1–12

    Article  CAS  Google Scholar 

  3. Xua J, Hong Y, Cheng M, Xue B, Li YX (2019) Vanadyl acetylacetonate grafted on ordered mesoporous silica KIT-6 and itsenhanced catalytic performance for direct hydroxylation of benzene to phenol. Microporous Mesoporous Mater 285:223–230

    Article  Google Scholar 

  4. R-Malherbe R, Marque F (2004) Synthesis and characterization of silica microsphere-based mesoporous materials. Mater Sci Semiconductor Process 7:467–469

    Article  Google Scholar 

  5. Gupta BD, Sharma DK (1997) Evanescent wave absorption based fiber optic pH sensor prepared by dye doped sol–gel immobilization technique. Opt Commun 140:32–35

    Article  CAS  Google Scholar 

  6. Rutledge H, Oliva-Chatelain BL, Maguire-Boyle SJ, Flood DL, Barron AR (2014) Imbedding germanium quantum dots in silica by a modified Stöber method. Mater Sci Semiconductor Process 17:7–12

    Article  CAS  Google Scholar 

  7. Kim B, Yang I, Jung JC, Seung Lee T, Yeom B (2019) Titania nanoparticle-loaded mesoporous silica synthesized through layer-bylayer assembly for the photodegradation of sodium dodecylbenzenesulfonate. Appl Surf Sci 490:38–46

    Article  CAS  Google Scholar 

  8. Grau EN, Roman G, Díaz Compañy A, Brizuela G, Juan A, Simonetti S (2019) Surface modification vs sorption strength: study of nedaplatin drug supported on silica. Appl Surf Sci 465:693–699

    Article  CAS  Google Scholar 

  9. Cheng X, Liu S, Lu L, Sui X, Meynen V, Cool P, Vansant EF, Jiang J (2007) Fast fabrication of hollow silica spheres with thermally stable nanoporous shells. Microporous Mesoporous Mater 98:41–46

    Article  CAS  Google Scholar 

  10. Ottaviani MF, Moscatelli A, Desplantier-Giscard D, Renzo FD, Kooyman PJ, Alonso B, Galarneau A (2004) Synthesis of micelle-templated silicas from cetyltrimethylammonium bromide/1,3,5-trimethylbenzene micelles. J Phys Chem B 108:12123–12129

    Article  CAS  Google Scholar 

  11. Venkatathri N, Nanjundan S (2009) Synthesis and characterization of a mesoporous silica microsphere from polystyrene. Mater Chem Phys 113:933–936

    Article  CAS  Google Scholar 

  12. Yongqi H, Zhao H, Li Y (2008) Synthesis method for silica needleshaped nano-hollow structure. Mater Lett 62:3401–3403

    Article  Google Scholar 

  13. Venkatathri N (2007) Synthesis of mesoporous silica nanosphere using different templates. Solid State Commun 143:493–497

    Article  CAS  Google Scholar 

  14. Singh LP, Bhattacharyya SK, Mishra G, Ahalawat S (2011) Functional role of cationic surfactant to control the nano size of silica powder. Appl Nanosci 1:117–122

    Article  CAS  Google Scholar 

  15. Gonçalves MC (2018) Sol-gel silica nanoparticles in medicine: a natural choice. design, synthesis and products. Molecules 23:2021

    Article  Google Scholar 

  16. Bao Y, Wang T, Kang Q, Shi C, Ma J Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane. Sci Rep 7:46638. https://doi.org/10.1038/srep46638

  17. Avossaa J, Bifulcoa A, Amendolab E, Gesuelec F, Oscuratoc SL, Gizawd Y, Mensitieria G, Brandaa F (2019) Forming nanostructured surfaces through Janus colloidal silica particleswith nanowrinkles: a new strategy to superhydrophobicity. Appl Surf Sci 465:73–81

    Article  Google Scholar 

  18. Saidi IA, Sadik F (2016) Synthesis and investigation of phenol red dye doped polymer films. Adv Mater Phys Chem 6:120–128

    Article  Google Scholar 

  19. Zulfiqar U, Subhani T, Husain SW (2016) Synthesis and characterization of silica nanoparticles from clay. J Asian Ceram Societies 4:91–96

    Article  Google Scholar 

  20. Loryuenyong V, Muanghom T, Apinyanukul T, Rutthongjan P (2011) Synthesis of templated mesoporous silica nanoparticles under base catalysis. Adv Appl Ceram 110:335–340

    Article  CAS  Google Scholar 

  21. Rameli N, Jumbri K, Wahab RA, Ramli A, Huyop F (2018) Synthesis and characterization of mesoporous silica nanoparticles using ionic liquids as a template. IOP Conf Ser 1123:012068

    Article  Google Scholar 

  22. Wu S, Moua C, Lin H (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42:3862–3875

    Article  CAS  Google Scholar 

  23. Veerapandian M, Yun K (2013) Methylene blue dye coated silver–silica nanoparticles with dual functionality fabricated by injection pump and ultrasonochemistry. Mater Res Bull 48:1817–1823

    Article  CAS  Google Scholar 

  24. Islam S, Bakhtiar H, Haider Z, Riaz S, Naseem S, Chudhary S, Suan LP, Osman SS, Aziz MS (2019) BPB dye confined growth of surfactant assisted mesostructured silica matrix fiber optic sensing traces J Saudi Chem Soc 23(4):427–438

    Article  CAS  Google Scholar 

  25. Schmid RD, Verger R (1998) Angew Chem Int Ed 37:1608

  26. Kachbouri S, Mnasri N, Elaloui E, Moussaoui Y (2018) Tuning particle morphology of mesoporous silica nanoparticles for adsorption of dyes from aqueous solution. J Saudi Chem Soc 22:405–415

    Article  CAS  Google Scholar 

  27. Landers J, Gor GY, Neimark AV (2013) Density functional theory methods for characterization of porous materials. Colloids Surf A 437:3–32

    Article  CAS  Google Scholar 

  28. Narayan R, Nayak UY, Raichur AM, Garg S (2018) Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics 10:118

    Article  CAS  Google Scholar 

  29. Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2011) Synthesis and characterization of ordered mesoporous silica nanoparticles with tunable physical properties by varying molar composition of reagents, African. J Pharm Pharmacol 5:2402–2410

    CAS  Google Scholar 

  30. Meng X, Wang Y, Wang H, Zhong J, Chen R (2013) Preparation of the multifunctional antireflective films from a templating composite silica sol with entwining structures. Surf Coat Technol 236:518–524

    Article  CAS  Google Scholar 

  31. Lu P, Fu W, Huang S, Lin C, Ho M, Chen Y, Cheng H (2018) Methodology for sample preparation and size measurement of commercial ZnO nanoparticles. J food drug Anal 26:128–636

    Google Scholar 

  32. Balakrishnan V, Wab HAA, Razak KA, Shamsuddin S (2013) In vitro evaluation of cytotoxicity of colloidal amorphous silica nanoparticles designed for drug delivery on human cell lines. J Nanomater 2013:729306. https://doi.org/10.1155/2013/729306

  33. Chauhan SS, Jasra RV, Sharma AL (2012) Phenol red dye functionalized nanostructured silica films as optical filters and pH sensors. Ind Eng Chem Res 51:10381–10389

    Article  CAS  Google Scholar 

  34. Wang E, Chow K-F, Kwan V, Chin T, Wong C, Bocarsly A (2003) Fast and long term optical sensors for pH based on sol–gels. Analytica Chim Acta 495:45–50

    Article  CAS  Google Scholar 

  35. Alvarado-Mendez R-L, Andrade-Lucio R, Hernandez-Cruz D, Lessard RA, Avina-Cervantes JG (2005) Design and characterization of pH sensor based on sol–gel silica layer on plastic optical fiber. Sens Actuators B 106:518–522

    Article  CAS  Google Scholar 

  36. Garcia-Heras M, Gil C, Carmona N, Faber J, Kromka K, Villegas MA (2005) Optical behavior of pH detectors based on sol–gel technology. Anal Chim Acta 540:147–152

    Article  CAS  Google Scholar 

  37. Kassal P, Surina R, Vrsaljko D, Steinberg IM (2014) Hybrid sol–gel thin films doped with a pH indicator: effect of organic modification on optical pH response and film surface hydrophilicity. J Sol-Gel Sci Technol 69:586–595

    Article  CAS  Google Scholar 

  38. Suah FBM, Ahmad M, Taib MN (2003) Applications of artificial neural network on signal processing of optical fibre pH sensor based on bromophenol blue doped with sol-gel film. Sens Actuators B 90:182–188

    Article  CAS  Google Scholar 

  39. Islam S, Bidin N, Riaz S, Naseem S (2017) Self-assembled hierarchical phenolphthalein encapsulated silica nanoparticles: structural, optical and sensing response. Sens Actuators A 266:111–121

    Article  Google Scholar 

  40. Makote R, Collinson MM (1999) Organically modified silicate films for stable pH sensors. Analytica Chim Acta 394:195–200

    Article  CAS  Google Scholar 

  41. Yari A, Dinarvand M (2011) Sol-gel film doped with bromopyrogallol red as a highly sensitive sensing element for a new pH optical sensor. J Iran Chem Soc 8:1091–1097

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Universiti Teknologi Malaysia, Co-financed by the Malaysian Ministry of Education through PDRU fund vote 04E55. Moreover, the authors AA and SI would like to express their gratitude to Deanship of scientific research at King Faisal University for the financial support under RAE’D track (grant no. 187010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumaila Islam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, S., Bakhtiar, H., Alshoaibi, A. et al. Fast responsive thermally stable silica microspheres for sensing evaluation: sol–gel approach. J Sol-Gel Sci Technol 96, 614–626 (2020). https://doi.org/10.1007/s10971-020-05366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05366-0

Keywords

Navigation