Skip to main content
Log in

QTL identification for downy mildew resistance in cucumber using genetic linkage map based on SSR markers

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Fourteen cucumber lines were tested for genetic homozygosity and performed pairwise comparison to identify a pair with the highest DNA polymorphic level. Cucumber accessions CSL0067 and CSL0139 were selected to generate 315 F2 populations. The genetic linkage map based on 66 polymorphic SSR markers was constructed. It composed of eight linkage groups (LGs) spanning 474.4 cM. Downy mildew disease reaction was evaluated in cotyledons, first and second true leaf on 7, 10, and 14 day after inoculation. The results showed that downy mildew resistance was controlled by multiple recessive genes. The susceptible to resistant ratio of F2 progenies fit 9:7 susceptible/resistant segregation types corresponding to duplicate recessive epistasis. Fourteen QTLs were detected. The phenotypic variance ranged from 5.0 to 12.5%, while LOD values ranged from 3.538 to 9.165. Two major QTLs and two QTL hotspots were identified. Moreover, the additive effects data explained that these QTL reduced downy mildew susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Alfandi M., Ji Y., Shen L., Qi X., Xu Q. and Chen X. 2010 Construction of genetic linkage map and localization of QTLs for powdery mildew resistance in cucumber (Cucumis sativus L.). Acta Hort. (ISHS) 871, 33–41.

    Article  Google Scholar 

  • Arumuganathan K. and Earle E. D. 1991 Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218.

    Article  CAS  Google Scholar 

  • Badr L. A. A. and Mohamed F. G. 1998 Inheritance and nature of resistance to downy mildew disease in cucumber (Cucumis sativus L.). Ann. Agric. Sci. 36, 2517–2544.

    Google Scholar 

  • Bai Z. L., Yuan X. J., Cai R., Liu L. Z., He H. L., Zhou H. F. et al. 2008 QTL mapping of resistance gene to downy mildew in cucumber. Prog. Nat. Sci. 18, 706–710.

    CAS  Google Scholar 

  • Bisognin D. A., Velasquez L. and Widders I. 2005 Cucumber seedling dependence on cotyledonary leaves for early growth. Pesq. Agropec. Bras., Brasília 40, 531–539.

    Google Scholar 

  • Boiteux L. S., Reifschneider F. J. B. and Pessoa H. B. S. V. 1995 Phenotypic expression of quantitative and qualitative components of partial resistance to powdery mildew (Sphaerotheca fuliginea race 1) in melon (Cucumis melo) germplasm. Plant Breed. 114, 185–187.

    Article  Google Scholar 

  • Call A. D., Criswell A. D., Wehner T. C., Klosinska U. and Kozik E. U. 2012 Screening cucumber for resistance to downy mildew caused by Pseudoperonospora cubensis (Berk. and Curt) Rostov. Crop Sci. 52, 577–592.

    Article  CAS  Google Scholar 

  • Cohen R. 1993 A leaf disk assay for detection of resistance of melons to Sphaerotheca fuliginea race 1. Plant Dis. 77, 513–517.

    Article  Google Scholar 

  • Doruchowski R. W. and Łąkowska-Ryk E. 1992 Inheritance of resistance to downy mildew (Pseudoperonospora cubensis Berk & Curt) in Cucumis sativus. In Proceedings of the V Eucarpia Cucurbitaceae symposium, pp. 132–138. Skierniewice-Warszawa, Poland.

  • Doyle J. J. and Doyle J. L. 1987 A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.

    Google Scholar 

  • El-Hafaz A., El-Din B., El-Doweny H. H. and Awad M. M. W. 1990 Inheritance of downy mildew resistance and its nature of resistance in cucumber. Ann. Agric. Sci. 28, 1681–1697.

    Google Scholar 

  • Fanourakis N. E. and Simon P. W. 1987 Analysis of genetic linkage in the cucumber. J. Hered. 78, 238–242.

    Article  Google Scholar 

  • Fukino N., Ohara T., Monforte A. J., Sugiyama M., Sakata Y., Kunihisa M. et al. 2008 Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). Theor. Appl. Genet. 118, 165–175.

    Article  CAS  Google Scholar 

  • He X., Li Y., Pandey S., Yandell B. S., Pathak M. and Weng Y. 2013 QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor. Appl. Genet. 126, 2149–2161.

    Article  CAS  Google Scholar 

  • Joehanes R. and Nelson J. C. 2008 QGene 4.0, an extensible Java QTL-analysis platform. Bioinforma 24, 2788–2789.

    Article  CAS  Google Scholar 

  • Lebeda A. and Cohen Y. 2011 Cucurbit downy mildew (Pseudoperonospora cubensis)—biology, ecology, epidemiology, host-pathogen interaction and control. Eur. J. Plant Pathol. 129, 157–192.

    Article  Google Scholar 

  • Lower R. L. and Edwards M. D. 1986 Cucumber breeding In Breeding vegetable crops (ed. M. J. Bassett), p. xii + 584pp. AVI Publishing, Westport.

  • McCreight J. D. 2003 Genes for resistance to powdery mildew races 1 and 2US in melon PI 313970. Hort. Sci. 38, 591–594.

    Google Scholar 

  • Pang X., Zhou X., Wan H. and Chen J. 2013 QTL mapping of downy mildew resistance in an introgression line derived from interspecific hybrization between cucumber and Cucumis hystrix. J. Phytopathol. 161, 536–543.

    Article  Google Scholar 

  • Ren Y., Zhang Z., Liu J., Staub J. E., Han Y., Cheng Z et al. 2009 An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4, e5795.

    Article  Google Scholar 

  • Savory E. A., Granke L. L., Quesada-Ocampo L. M., Varbanova M., Hausbeck M. K. and Day B. 2011 The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol. Plant Pathol. 12, 217–226.

    Article  Google Scholar 

  • Van Vliet G. J. A. and Meysing W. D. 1976 Relation in the inheritance of resistance to Pseudoperonospora cubensis Rost and Sphaerotheca fuliginea Poll. in cucumber (Cucumis sativus L.). Euphytica 26, 793–796.

    Article  Google Scholar 

  • Zeng Z. B. 1994 Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.

    Article  CAS  Google Scholar 

  • Zhang S. P., Liu M. M., Miao H., Zhang S. Q., Yang Y. H., Xie B. Y. et al. 2013 Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis. 97, 245–251.

    Article  CAS  Google Scholar 

  • Zhang S. Q., Gu X. F., Zhang S. P. and Zou Z. R. 2007 Genetic analysis of downy mildew resistance in cucumber. Acta Bot. Boreal.-Occid. Sin. 27, 2416–2420.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by National Center for Genetic Engineering and Biotechnology (BIOTEC) and the Faculty of Science, Kasetsart University. The greenhouse for phenotypic analysis was screened at Chia Tai Company Limited, Chiang Mai, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CHATCHAWAN JANTASURIYARAT.

Additional information

Corresponding editor: H. A. Ranganath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

INNARK, P., PANYANITIKOON, H., KHANOBDEE, C. et al. QTL identification for downy mildew resistance in cucumber using genetic linkage map based on SSR markers. J Genet 99, 81 (2020). https://doi.org/10.1007/s12041-020-01242-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-01242-6

Keywords

Navigation