Skip to main content
Log in

Convection in Water Droplet in the Presence of External Air Motion

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Convection in a sessile droplet of water in a laminar air flow was studied. The experiments were conducted in the air velocity range \(U_{1}=2\)–5 m/s. The experimental data are compared with approximate numerical solutions and an approximate analytic solution made for small numbers Re for both the liquid and gas phase. It has been shown experimentally and theoretically that the maximum velocity in the droplet is proportional to the air velocity to the power of 1.5 and the droplet radius to the power of 0.5. An explanation of the fact that the experimental data are up to 50 times as small as the theoretical calculations has been suggested for the first time. The obtained dependencies may be useful for modeling the behavior of droplets in a spray.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Chakraborty, S., Rosen, M.A., and MacDonald, B.D., Analysis and Feasibility of an Evaporative Cooling System with Diffusion-Based Sessile Droplet Evaporation for Cooling Microprocessors, Appl. Therm. Engin., 2017, vol. 125, pp. 104–110.

  2. Volkov, R.S. and Strizhak, P.A., Research of Temperature Fields and Convection Velocities in Evaporating Water Droplets Using Planar Laser-Induced Fluorescence and Particle Image Velocimetry,Exp. Therm. Fluid Sci., 201, vol. 897, pp. 392–407.

  3. Nizovtsev, M.I., Borodulin, V.Y., and Letushko, V.N., Influence of Condensation on the Efficiency of Regenerative Heat Exchanger for Ventilation, Appl. Therm. Engin., 2017, vol. 111, pp. 997–1007.

  4. Korobeinichev, O.P. et al., Fire Suppression by Low-Volatile Chemically Active Fire Suppressants Using Aerosol Technology,Fire Saf. J., 2012, vol. 51, pp. 102–109.

  5. Volkov, R.S., Kuznetsov, G.V., and Strizhak, P.A., Temperature and Velocity Fields of the Gas-Vapor Flow near Evaporating Water Droplets, Int. J. Therm. Sci., 2018, vol. 134, pp. 337–354.

  6. Carrier, O., Shahidzadeh-Bonn, N., Zargar, R., Aytouna, M., Habibi, M., Eggers, J., and Bonn, D., Evaporation of Water: Evaporation Rate and Collective Effects, J. Fluid Mech., 2016, vol. 798, pp. 774–786.

  7. Strizhak, P.A., Volkov, R.S., Castanet, G., Lemoine, F., Rybdylova, O., and Sazhin, S.S., Heating and Evaporation of Suspended Water Droplets: Experimental Studies and Modeling, Int. J. Heat Mass Transfer, 2018, vol. 127, pp. 92–106.

  8. Tonini, S. and Cossali, G.E., A Novel Formulation of Multi-Component Drop Evaporation Models for Spray Applications,Int. J. Therm. Sci., 2015, vol. 89, pp. 245–253.

  9. Zhang, Y., Jia, M., Yi, P., Liu, H., and Xie, M., An Efficient Liquid Film Vaporization Model for Multi-Component Fuels Considering Thermal and Mass Diffusions, Appl. Therm. Engin., 2017, vol. 112, pp. 534–548.

  10. Rozentsvaig, A. and Strashinskii, Ch., Hydrodynamic Aspects of Boiling up of a Disperse Phase in a Homogeneous Turbulent Flow of an Emulsion, High Temp., 2011, vol. 49, pp. 143–146.

  11. Misyura, S.Y. and Nakoryakov, V.E., Nonstationary Combustion of Methane with Gas Hydrate Dissociation, Energy Fuels, 2013, vol. 27, no. 11, pp. 7089–7097.

  12. Misyura, S.Y. and Donskoy, I.G., Dissociation of Natural and Artificial Gas Hydrate, Chem. Eng. Sci., 2016, vol. 148, pp. 65–77.

  13. Semenov, M.E. et al., DSC and Thermal Imaging Studies of Methane Hydrate Formation and Dissociation in Water Emulsions in Crude Oils, J. Therm. An. Calor., 2015, vol. 119, pp. 757–767.

  14. Misyura, S.Y., Effect of Heat Transfer on the Kinetics of Methane Hydrate Dissociation, Chem. Phys. Lett., 201, vol. 3583, pp. 34–37.

  15. Balboni, E., Espinosa-Marzal, R.M., Doehne, E., and Scherer, G.W., Can Drying and Re-Wetting of Magnesium Sulfate Salt Lead to Damage of Stone?, Environ. Earth Sci., 2011, vol. 63, pp. 1463–1473.

  16. Steiger, M. and Asmussen, S., Crystallization of Sodium Sulfate Phases in Porous Materials: The Phase Diagram Na\(_{2}\)SO\(_{4}\)–H\(_{2}\)O and the Generation of Stress, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 4291–4306.

  17. Schiro, M., Ruiz-Agudo, E., and Rodriguez-Navarro, C., Damage Mechanism of Porous Materials due to In-Pore Salt Crystallization,Phys. Rev. Lett., 2012, vol. 109, p. 265503.

  18. Misyura, S.Y., Effect of Various Key Factors on the Law of Droplet Evaporation on the Heated Horizontal Wall, Chem. Eng. Res. Des., 2018, vol. 129, pp. 306–313.

  19. Carle, F., Semenov, S., Medale, M., and Brutin, D., Contribution of Convective Transport to Evaporation of Sessile Droplets: Empirical Model, Int. J. Therm. Sci., 2016, vol. 101, pp. 35–47.

  20. Kelly-Zion, P.L., Pursell, C.J., Vaidya, S., and Batra, J., Evaporation of Sessile Drops under Combined Diffusion and Natural Convection, Colloids Surf., A, 2011, vol. 381, pp. 31–36.

  21. Misyura, S.Y., Volkov, R.S., and Filatova, A.S., Interaction of Two Drops at Different Temperatures: The Role of Thermocapillary Convection and Surfactant, Colloids Surf., A, 2018, vol. 559, pp. 275–283.

  22. Volkov, R.S. et al., The Influence of Key Factors on the Heat and Mass Transfer of a Sessile Droplet, Exp. Therm. Fluid Sci., 2018, vol. 99, pp. 59–70.

  23. Misyura, S.Y., Evaporation and Heat Transfer of a Sessile Drop of Aqueous Salt Solution on Heated Wall, Int. J. Heat Mass Transfer, 2018, vol. 116, pp. 667–674.

  24. Hu, H. and Larson, R.G., Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet,Langmuir, 2005, vol. 21, pp. 3972–3980.

  25. Hu, H. and Larson, R.G., Marangoni Effect Reverses Coffee-Ring Depositions, J. Phys. Chem. B, 2006, vol. 110, pp. 7090–7094.

  26. Misyura, S.Y., Evaporation of a Sessile Water Drop and a Drop of Aqueous Salt Solution, Sci. Rep., 2017, vol. 7, p. 14759.

  27. Misyura, S.Y., Heat Transfer of Aqueous Salt Solutions during Evaporation on a Structured Heated Wall, Int. Commun. Heat Mass Transfer, 2018, vol. 96, pp. 7–11.

  28. Diddens, C., Tan, H., Lv, P., Versluis, M., Kuerten, J.G.M., Zhang, X., and Lohse, D., Evaporating Pure, Binary and Ternary Droplets: Thermal Effect and Axial Symmetry Breaking, J. Fluid Mech., 2017, vol. 823, pp. 470–497.

  29. Machrafi, H., Rednikov, A., Colinet, P., and Dauby, P., Benard Instabilities in a Binary-Liquid Layer Evaporating into an Inert Gas,J. Colloid Interface Sci., 2010, vol. 349, pp. 331–353.

  30. Semenov, S. et al., Evaporation of Droplets of Surfactant Solutions, Langmuir, 2013, vol. 29, pp. 10028–10036.

  31. Semenov, S. et al., Simultaneous Spreading and Evaporation: Recent Developments, Adv. Colloid Interface Sci., 2014, vol. 206, pp. 382–398.

  32. Misyura, S.Y., Non-Isothermal Evaporation of Salt Solutions on a Microstructured Surface, Nanoscale Microscale Thermophys. Eng., 2018, vol. 22, no. 3, pp. 213–229.

  33. Petrov, A.G., The Energy Dissipation Rate of a Viscous Fluid with a Condition for Shear Stress on a Boundary Streamline,Dokl. Akad. Nauk, 1989, vol. 304, no. 5, pp. 1082–1086.

  34. Petrov, A.G., Circulation Within Viscous Deformed Drops Moving at a Constant Velocity in a Gas, J. Appl. Mech. Tech. Phys., 1990, vol. 30, no. 6, pp. 957–964; DOI: 10.1007/bf00851505.

  35. Edelmann, C.A., Clercq, P., Le, C., and Noll, B., Numerical Investigation of Different Modes of Internal Circulation in Spherical Drops: Fluid Dynamics and Mass/Heat Transfer, Int. J. Multiphase Flow, 2017, vol. 95, pp. 54–70.

  36. Ninomiya, N. and Yasuda, K., Visualization and PIV Measurement of the Flow around and inside of a Falling Droplet, J. Visualization, 2006, vol. 9, no. 3, pp. 257–264.

  37. Zhou, Q., Erkan, N., and Okamoto, K., Simultaneous Measurement of Temperature and Flow Distributions inside Pendant Water Droplets Evaporating in an Upward Air Stream Using Temperature-Sensitive Particles, Nucl. Eng. Design, 2019, vol. 345, pp. 157–165.

  38. Kutateladze, S.S., Osnovy teorii teploobmena (Fundamentals of Heat Transfer Theory), Moscow: Atomizdat, 1979.

  39. Batchelor, G., Introduction to Fluid Dynamics, Cambridge: Cambridge Univ. Press, 1967.

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-79-30075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Misyura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misyura, S.Y., Morozov, V.S. & Gobyzov, O.A. Convection in Water Droplet in the Presence of External Air Motion. J. Engin. Thermophys. 29, 443–450 (2020). https://doi.org/10.1134/S181023282003008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023282003008X

Navigation