Skip to main content
Log in

Seasonal Variability of Water and Sea-Ice Circulation in the Arctic Ocean in a High-Resolution Model

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this work, results of modeling the intra-annual variability of water and ice circulation in the Arctic Ocean by means of the INMIO4.1 three-dimensional model of ocean dynamics and the CICE5.1 sea-ice model are considered. The coupled ocean–ice model is implemented on massively parallel computers under the control of the CMF2.0 cosimulation software package. Results of a numerical experiment carried out according to the CORE-I protocol are presented. Geographical distributions, mean values, and intra-annual variability of the model solution characteristics describing the flow of water through key straits at the boundaries of the Arctic Ocean, propagation paths and vertical structure of the warm Atlantic water layer, and the area and volume of sea ice are analyzed. Qualitative agreement with observational and other high-resolution modeling data is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. V. Ivanov, V. A. Alekseev, T. A. Alekseeva, N. V. Koldunov, I. A. Repina, and A. V. Smirnov, “Is Arctic ice cover becoming seasonal?” Issled. Zemli Kosmosa, No. 4, 50–65 (2013).

    Google Scholar 

  2. V. Ivanov, V. Alexeev, N. V. Koldunov, I. A. Repina, A. B. Sandoe, L. H. Smedsrud, and A. Smirnov, “Arctic Ocean heat impact on regional ice decay: A suggested positive feedback,” J. Phys. Oceanogr. 46, 1437–1456 (2016). https://doi.org/10.1175/JPO-D-15-0144.1

    Article  Google Scholar 

  3. A. Proshutinsky, M. Steele, J. Zhang, et al., “Multinational effort studies differences among Arctic Ocean models,” EOS, Trans., Am. Geophys. Union 82 (51), 637–644 (2001).

    Article  Google Scholar 

  4. M. Yu. Kulakov, A. P. Makshtas, and S. V. Shutilin, “AARIIOCM: Combined model of water circulation and ices in the Arctic Ocean,” Probl. Arkt. Antarkt., No. 2 (92), 6–18 (2012).

  5. M. Yu. Kulakov, I. M. Ashik, and K. V. Fil’chuk, “A technique for modeling and short-term forecasting of ice drift in the Arctic Ocean and Arctic seas,” in Results of Testing New and Improved Techniques, Models, and Methods of Hydrometeorological Forecasting (Gidromettsentr Rossii, Moscow, 2016), No. 43, pp. 114–132 [in Russian].

  6. N. A. Diansky, V. V. Fomin, I. M. Kabatchenko, and V. M. Gruzinov, “Simulation of circulation in the Kara and Pechora Seas with the system for operational diagnosis and forecasting of marine Dynamics,” Arktika: Ekol. Ekon., No 1 (13), 57–73 (2014).

  7. S. N. Moshonkin, G. V. Alekseev, N. A. Dianskii, et al., “Reproduction of the large-scale state of water and sea ice in the Arctic Ocean in 1948–2002: Part I. Numerical model,” Izv., Atmos. Oceanic Phys. 47, 628 (2011).

    Article  Google Scholar 

  8. N. G. Yakovlev, “Modeling of ocean climate and sea ice of the Arctic Ocean using the FEMAO finite element model: on the problem of understanding the role of various physical processes in the formation of the observed states and reproduction thereof in the global climate models,” Probl. Arkt. Antarkt. 1, 17–26 (2008).

    Google Scholar 

  9. N. G. Yakovlev, “Reproduction of the large-scale state of water and sea ice in the Arctic Ocean in 1948–2002: Part I. Numerical model,” Izv., Atmos. Ocean. Phys. 45 (3), 357–371 (2009).

    Article  Google Scholar 

  10. E. N. Golubeva and G. A. Platov, “Numerical modeling of the Arctic Ocean ice system response to variations in the atmospheric circulation from 1948 to 2007,” Izv., Atmos. Ocean. Phys. 45 (1), 137–151 (2009).

    Article  Google Scholar 

  11. E. N. Golubeva, G. A. Platov, and D. F. Yakshina, “Numerical modeling of the current state of the waters and sea ice of the Arctic Ocean,” Led Sneg, No. 55 (2), 81–92 (2015).

    Google Scholar 

  12. E. N. Golubeva and D. F. Yakshina, in Proc. Int. Young Scientists School and Conf. on Computational Information Technologies for Environmental Sciences, CITES-2019 (Moscow, 27 May–6 June 2019), pp. 138–141.

  13. E. U. Mironov, V. G. Smirnov, I. A. Bychkova, M. Yu. Kulakov, D. M. Demchev, “New technologies for iceberg detection and iceberg drift forecast in the western sector of the Arctic,” Probl. Arkt. Antarkt., No. 2 (104), 21–32 (2015).

  14. C. Chen, G. Gao, Y. Zhang, R. C. Beardsley, Z. Lai, J. Qi, and H. Lin, “Circulation in the Arctic Ocean: results from a high-resolution coupled ice-sea nested Global-Fvcom and Arctic-Fvcom system,” Prog. Oceanogr. 141, 60–80 (2016). https://doi.org/10.1016/j.pocean.2015.12.002

    Article  Google Scholar 

  15. R. A. Ibrayev, R. N. Khabeev, and K. V. Ushakov, “Eddy–resolving 1/10° model of the World Ocean,” Izv., Atmos. Oceanic Phys. 48 (1), 37–46 (2012).

    Article  Google Scholar 

  16. Joint Supercomputer Center of the Russian Academy of Sciences. www.jscc.ru

  17. E. C. Hunke, W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, CICE: the Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 5.1. 2015. http://oceans11.lanl.gov/trac/CICE/ attachment/wiki/WikiStart/cicedoc.pdf?format=raw

  18. S. M. Griffies, A. Biastoch, C. Boning, et al., “Coordinated ocean–ice reference experiments (COREs),” Ocean Modell. 26 (1–2), 1–46 (2009).

    Article  Google Scholar 

  19. R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World Ocean Atlas 2009, Vol. 1: Temperature, Ed. by S. Levitus, (U.S. Government Printing Office, Washington, D.C., 2010).

  20. V. V. Kalmykov, R. A. Ibrayev, M. N. Kaurkin, and K. V. Ushakov, “Compact modeling framework V3.0 for high-resolution global ocean-ice-atmosphere models,” Geosci. Model Dev. 11, 3983–3997 (2018).

    Article  Google Scholar 

  21. I. V. Polyakov, G. V. Alekseev, L. A. Timokhov, et al., “Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years,” J. Clim. 17, 4485–4497 (2004).

    Article  Google Scholar 

  22. Q. Wang, C. Wekerle, S. Danilov, et al., “A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4,” Geosci Model Dev. 11, 1229–1255 (2018).

    Article  Google Scholar 

  23. Q. Shu, Q. Wang, J. Su, et al., “Assessment of the Atlantic water layer in the Arctic Ocean in CMIP5 climate models,” Clim. Dyn. 53, 5279–5291 (2019). https://doi.org/10.1007/s00382-019-04870-6

    Article  Google Scholar 

  24. V. F. Sukhovei, World Ocean Seas (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  25. S. N. Moshonkin, A. V. Bagno, A. V. Gusev, and N. A. Diansky, “Numerical modelling of oceanic circulation and sea ice in the North Atlantic-Arctic Ocean-Bering Sea region,” Russ. J. Numer. Anal. Math. Modelling 21 (4), 421–443 (2006).

    Article  Google Scholar 

  26. Y. Aksenov, S. Bacon, A. C. Coward, and N. P. Holliday, “Polar outflow from the Arctic Ocean: a high resolution model study,” J. Mar. Syst. 83 (1), 14–37 (2010).

    Article  Google Scholar 

  27. A. Proshutinsky, Y. Aksenov, J. C. Kinney, et al., “Recent advances in Arctic Ocean studies employing models from the Arctic Ocean model intercomparison project,” Oceanography, 24, 102–113 (2011).

    Article  Google Scholar 

  28. M. Ilicak, H. Drange, Q. Wang, et al., “An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: hydrography and fluxes,” Ocean Modell. 100, 141–161 (2016).

    Article  Google Scholar 

  29. M. C. Serreze, A. P. Barrett, A. G. Slater, R. A. Woodgate, K. Aagaard, R. B. Lammers, M. Steele, R. Moritz, M. Meredith, and C. M. Lee, “The large-scale freshwater cycle of the Arctic,” J. Geophys. Res.: Oceans 111, C11010 (2006). https://doi.org/10.1029/2005JC003424

    Article  Google Scholar 

  30. Q. Wang, M. Ilicak, R. Gerdes, et al., “An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: sea ice and solid freshwater,” Ocean Modell. 99, 110–132 (2016).

    Article  Google Scholar 

  31. V. Yu. Aleksandrov, “Changes in ice thickness in the Arctic since the end of the 19th century,” Probl. Arkt. Antarkt., No. 4 (94), 63–73 (2012).

Download references

ACKNOWLEDGMENTS

The work was carried out with the use of supercomputer resources of the Interdepartmental Center for Supercomputing, Russian Academy of Sciences [16].

Funding

This study was supported by the Russian Science Foundation, project no. 19-77-00104, in the Shirshov Institute of Oceanology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Y. Kalnitskii.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalnitskii, L.Y., Kaurkin, M.N., Ushakov, K.V. et al. Seasonal Variability of Water and Sea-Ice Circulation in the Arctic Ocean in a High-Resolution Model. Izv. Atmos. Ocean. Phys. 56, 522–533 (2020). https://doi.org/10.1134/S0001433820050060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820050060

Keywords:

Navigation