Skip to main content
Log in

Reconstruction of the Internal-Wave Parameters in the Atmosphere from Signal Amplitude Fluctuations in a Radio-Occultation Experiment

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this paper, we discuss a method for reconstructing the parameters of internal gravitational waves (IGWs) in the stratosphere from amplitude fluctuations in satellite radio-occultation observations. In the formation of radio-signal fluctuations, IGWs play the main role in these observations, while the contribution of isotropic turbulence is negligible. We consider methodological issues: (1) the choice of a model for the spatial spectrum of internal waves, (2) the derivation of relations connecting the statistical parameters of the IGW spectra and amplitude fluctuations in the approximation of a phase screen and weak fluctuations, (3) the development of a reconstruction algorithm, and (4) the estimation of possible errors. The reconstructed parameters are the outer or dominant scale and the structural characteristic of the vertical IGW spectrum, which determines the spectral amplitude in the saturation mode. The operating range covers altitudes from 28 km to the upper boundary of the tropopause. The error estimates for the reconstruction algorithm are 10–20% for the outer scale and 20–40% for the structural characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41 (1), 3-1–3-64 (2003). https://doi.org/10.1029/2001RG000106

  2. T. Tsuda, T. E. Van Zandt, M. Mizumoto, S. Kato, and S. Fukao, “Spectral analysis of temperature and Brunt–Vaisala frequency fluctuations observed by radiosondes,” J. Geophys. Res. 96, 17265–17278 (1991).

    Article  Google Scholar 

  3. G. D. Nastrom, T. E. Van Zandt, and J. M. Warnock, “Vertical wavenumber spectra of wind and temperature from high–resolution balloon soundings over Illinois,” J. Geophys. Res. 102 (D6), 6685–6701 (1997).

    Article  Google Scholar 

  4. R. A. Vincent and M. J. Alexander, “Gravity waves in the tropical lower stratosphere: observational study of seasonal and interannual variability,” J. Geophys. Res. 105 (D14), 17971–17982 (2000).

    Article  Google Scholar 

  5. M. Yoshiki and K. Sato, “A statistical study of gravity waves in the polar regions based on operational radiosonde,” J. Geophys. Res. 105 (D14), 17995–18011 (2000).

    Article  Google Scholar 

  6. L. Wang, M. A. Geller, and M. J. Alexander, “Spatial and temporal variations of gravity wave parameters. Part I: Intrinsic frequency, wavelength, and vertical propagation direction,” J. Atmos. Sci. 62 (1), 125–142 (2005).

    Article  Google Scholar 

  7. D. C. Fritts, T. Tsuda, T. E. Van Zandt, S. A. Smith, T. Sato, S. Fukao, and K. Sato, “Studies of velocity fluctuations in the lower atmosphere using the MU radar. II. Momentum fluxes and energy densities,” J. Atmos. Sci. 47 (1), 51–66 (1990).

    Article  Google Scholar 

  8. Y. Murayama, T. Tsuda, and S. Fukao, “Seasonal variation of gravity wave activity in the lower atmosphere observed with the MU radar,” J. Geophys. Res. 99 (D11), 23057–23069 (1994). .https://doi.org/10.1029/94JD01717

    Article  Google Scholar 

  9. J. T. Bacmeister, S. D. Eckermann, P. A. Newman, L. R. Lait, K. R. Chan, M. Loewenstein, M. H. Proffitt, and B. L. Gary, “Stratospheric horizontal wavenumber spectra of winds, potential temperature and atmospheric tracers observed by high–altitude aircraft,” J. Geophys. Res. 101 (D5), 9441–9470 (1996). https://doi.org/10.1029/95JD03835

    Article  Google Scholar 

  10. J. Y. N. Cho, Y. Zhu, R. E. Newel, B. E. Anderson, J. D. Barrick, G. L. Gregory, G. W. Sachse, M. A. Carroll, and G. M. Albercook, “Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 1. Climatology,” J. Geophys. Res. 104 (D5), 5697–5716 (1999).

    Article  Google Scholar 

  11. M. J. Alexander, J. Gille, C. Cavanaugh, M. Coffey, C. Craig, T. Eden, G. Francis, C. Halvorson, J. Hannigan, R. Khosravi, D. Kinnison, H. Lee, S. Massie, B. Nardi, J. Barnett, C. Hepplewhite, A. Lambert, and V. Dean, “Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder (HIRDLS) observations,” J. Geophys. Res. 113, 18 (2008). https://doi.org/10.1029/2007JD008807

    Article  Google Scholar 

  12. M. Ern, P. Preusse, M. J. Alexander, and C. D. Warner, “Absolute values of gravity wave momentum flux derived from satellite data,” J. Geophys. Res. 109, D20103 (2004). https://doi.org/10.1029/2004JD004752

    Article  Google Scholar 

  13. A. S. Gurvich and V. Kan, “Structure of air density irregularities in the stratosphere from spacecraft observations of stellar scintillation: 1. Three-dimensional spectrum model and recovery of its parameters,” Izv., Atmos. Ocean. Phys. 39 (3), 300–310 (2003).

    Google Scholar 

  14. A. S. Gurvich and V. Kan, “Structure of air density irregularities in the stratosphere from spacecraft observations of stellar scintillation: 2. Characteristic scales, structure characteristics, and kinetic energy dissipation,” Izv., Atmos. Ocean. Phys. 39 (3), 311–321 (2003).

    Google Scholar 

  15. V. F. Sofieva, A. S. Gurvich, F. Dalaudier, and V. Kan, “Reconstruction of internal gravity waves and turbulence parameters in the stratosphere using GOMOS scintillation measurements,” J. Geophys. Res. 112, D12113 (2007). https://doi.org/10.1029/2006JD007483

    Article  Google Scholar 

  16. V. F. Sofieva, F. Dalaudier, A. Hauchecorne, and V. Kan, “High–resolution temperature profiles retrieved from bichromatic stellar scintillation measurements by GOMOS/Envisat,” Atmos. Meas. Tech. 12, 585–598 (2019). https://doi.org/10.5194/amt-12-585-2019

    Article  Google Scholar 

  17. R. Ware, M. Exner, D. Feng, M. Gorbunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anthes, S. Businger, and K. Trenberth, “GPS sounding of the atmosphere from low Earth orbit: Preliminary results,” Bull. Am. Meteorol. Soc. 77 (1), 19–40 (1996).

    Article  Google Scholar 

  18. M. P. Rennie, “The impact of GPS radio occultation assimilation at the Met Office,” Q. J. R. Meteorol. Soc. 136, 116–131 (2010).

    Article  Google Scholar 

  19. P. Poli, S. B. Healy, and D. P. Dee, “Assimilation of global positioning system radio occultation data in the ECMWF ERA–Interim reanalysis,” Q. J. R. Meteorol. Soc. 136, 1972–1990 (2010).

    Article  Google Scholar 

  20. S. Sokolovskiy, W. Schreiner, J. Weiss, Z. Zeng, D. Hunt, and J. Braun, in Joint 6th ROM SAF Data User Workshop and 7th IROWG Workshop (19–25 September, Konventum, Elsinore, Denmark). https://www.romsaf.org/romsaf–irowg–2019/en/abstract/104

  21. M. Liao, S. Healy, and P. Zhang, “Processing and quality control of FY–3C GNOS data used in numerical weather prediction applications,” Atmos. Meas. Tech. 12 (5), 2679–2692 (2019). https://doi.org/10.5194/amt-12-2679-2019

    Article  Google Scholar 

  22. A. Saltman and T. Yunck, in Joint 6th ROM SAF Data User Workshop and 7th IROWG Workshop (19–25 September, Konventum, Elsinore, Denmark). https://www. romsaf.org/romsaf–irowg–2019/en/abstract/51

  23. D. Masters, V. Irisov, V. Nguyen, T. Duly, O. Nogues-Correig, L. Tan, T. Yuasa, R. Sikarin, P. Platzer, M. Gorbunov, and C. Rocken. in Joint 6th ROM SAF Data User Workshop and 7th IROWG Workshop (19–25 September, Konventum, Elsinore, Denmark). https://www.romsaf. org/romsaf–irowg–2019/en/abstract/85

  24. M. E. Gorbunov, Physical and Mathematical Principles of Satellite Radio Occultation Sensing of the Earth’s Atmosphere (GEOS, Moscow, 2019) [in Russian].

    Google Scholar 

  25. T. Tsuda, M. Nishida, C. Rocken, and R. H. Ware, “A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET),” J. Geophys. Res. 105 (D6), 7257–7273 (2000). https://doi.org/10.1029/1999JD901005

    Article  Google Scholar 

  26. T. Tsuda and K. Hocke, “Vertical wave number spectrum of temperature fluctuations in the stratosphere using GPS occultation data,” J. Meteorol. Soc. Jpn. 80 (4B) 925–938 (2002).

    Article  Google Scholar 

  27. A. K. Steiner and G. Kirchengast, “Gravity wave spectra from GPS/MET occultation observations,” J. Atmos Ocean. Technol. 17 (4), 495–503 (2001).

    Article  Google Scholar 

  28. M. V. Ratnam, G. Tetzlaff, and C. Jacobi, “Global and seasonal variations of stratospheric gravity wave activity deduced from the CHAMP/GPS satellite,” J. Atmos. Sci. 61 (13) 1610–1620 (2004).

    Article  Google Scholar 

  29. A. de la Torre, T. Schmidt, and J. Wickert “A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP,” Geophys. Res. Lett. 33, L24809 (2006). https://doi.org/10.1029/2006GL027696

    Article  Google Scholar 

  30. S. P. Alexander, T. Tsuda, and Y. Kawatani, “COSMIC GPS observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model,” Geophys. Res. Lett., 35, L10808 (2008). https://doi.org/10.1029/2008GL033174

    Article  Google Scholar 

  31. H. Hei, T. Tsuda, and T. Hirooka, “Characteristics of atmospheric gravity wave activity in the polar regions revealed by GPS radio occultation data with CHAMP,” J. Geophys. Res. 113, D04107 (2008). https://doi.org/10.1029/2007JD008938

    Article  Google Scholar 

  32. T. Schmidt, A. de la Torre, and J. Wickert, “Global gravity wave activity in the tropopause region from CHAMP radio occultation data,” Geophys. Res. Lett. 35, L16807 (2008). https://doi.org/10.1029/2008GL034986

    Article  Google Scholar 

  33. L. Wang and M. J. Alexander, “Global estimates of gravity wave parameters from GPS radio occultation temperature data,” J. Geophys. Res.: Atmos. 115, D21122 (2010). https://doi.org/10.1029/2010JD013860

    Article  Google Scholar 

  34. M. Rapp, A. Dörnbrack, and B. Kaifler, “An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data,” Atmos. Meas. Tech., No. 11, 1031–1048 (2018). https://doi.org/10.5194/amt-11-1031-2018

  35. E. R. Kursinski, G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, “Observing Earth’s atmosphere with radio occultation measurements using the global positioning system,” J. Geophys. Res. 102 (D19) 23429–23465 (1997).

    Article  Google Scholar 

  36. F. Ladstädter, A. K. Steiner, M. Schwärz, and G. Kirchengast, “Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013,” Atmos. Meas. Tech. 8, 1819–1834 (2015). https://doi.org/10.5194/amt-8-1819-2015

    Article  Google Scholar 

  37. M. B. Belloul and A. Hauchecorne, “Effect of periodic horizontal gradients on the retrieval of atmospheric profiles from occultation measurements,” Radio Sci. 32 (2) 469–478 (1997).

    Article  Google Scholar 

  38. A. J. McDonald, “Gravity wave occurrence statistics derived from paired COSMIC/FORMOSAT3 observations,” J. Geophys. Res. 117 (D15), 406 (2012). https://doi.org/10.1029/2011JD016715

    Article  Google Scholar 

  39. T. Schmidt, P. Alexander, and A. de la Torre, “Stratospheric gravity wave momentum flux from radio occultations,” J. Geophys. Res.: Atmos. 121, 4443–4467 (2016). https://doi.org/10.1002/2015JD024135

    Article  Google Scholar 

  40. R. A. Anthes, P. A. Bernhardt, Y. Chen, L. Cucurull, K. F. Dymond, D. Ector, S.B. Healy, S.-P. Ho, D. C. Hunt, Y. -H. Kuo, H. Liu, K. Manning, C. McCormick, T. K. Meenam, W. J. Randel, C. Rocken, W. S. Schreiner, S. V. Sokolovskiy, S. Syndergaard, D.  C. Thomson, K. E. Trenderth, T.-K. Wee, N. L. Yen, and Z. Zeng, “The COSMIC/FORMOSAT-3 mission: Early results,” Bull. Am. Meteorol. Soc. 89 (3), 313–333 (2008). https://doi.org/10.1175/BAMS-89-3-3I3

    Article  Google Scholar 

  41. T. Horinouchi and T. Tsuda, “Spatial structures and statistics of atmospheric gravity waves derived using a heuristic vertical cross–section extraction from COSMIC GPS radio occultation data,” J. Geophys. Res. 114 (D16), 110 (2009). https://doi.org/10.1029/2008JD011068

    Article  Google Scholar 

  42. S. R. John and K. K. Kumar, “A discussion on the methods of extracting gravity wave perturbations from space–based measurements,” Geophys. Res. Lett. 40, 2406–2410 (2013). https://doi.org/10.1002/GRL.50451

    Article  Google Scholar 

  43. E. M. Dewan and R. F. Good, “Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in atmosphere,” J. Geophys. Res. 91 (D2), 2742–2748 (1986). https://doi.org/10.1029/JD091iD02p02742

    Article  Google Scholar 

  44. S. A. Smith, D. C. Fritts, and T.E. van Zandt, “Evidence of saturation spectrum of atmospheric gravity waves,” J. Atmos. Sci. 44 (10), 1404–1410 (1987).

    Article  Google Scholar 

  45. D. C. Fritts, “A review of gravity wave saturation processes, effects, and variability in the middle atmosphere,” Pure Appl. Geophys. 130 (2/3) 343–371 (1989).

    Article  Google Scholar 

  46. V. Kan, M. E. Gorbunov, and V. F. Sofieva, “Fluctuations of radio occultation signals in sounding the Earth’s atmosphere,” Atmos. Meas. Tech. 11, 663–680 (2018). https://doi.org/10.5194/amt-11-663-2018

    Article  Google Scholar 

  47. A. S. Gurvich and V. L. Brekhovskikh, “Study of the turbulence and inner waves in the stratosphere based on the observations of stellar scintillations from space: A model of scintillation spectra,” Waves Random Media 11 (3), 163–181 (2001) https://booksc.org/book/34902656/3521a1.https://doi.org/10.1080/13616670109409781

    Article  Google Scholar 

  48. A. S. Gurvich, “Fluctuations in the observations of extraterrestrial cosmic sources through the earth’s atmosphere,” Radiophys. Quantum Electron. 27 (8), 665–672 (1984).

    Article  Google Scholar 

  49. V. Kan, S. S. Matyugov, and O. I. Yakovlev, “The structure of stratospheric irregularities according to radio-occultation data obtained using satellite-to-satellite paths,” Radiophys. Quantum Electron. 45, 595–605 (2002).

    Article  Google Scholar 

  50. V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  51. F. D. Eaton, W. A. Peterson, J. R. Hines, K. R. Peterman, R. E. Good, R. R. Beland, J. H. Brown, “Comparison of VHF radar, optical, and temperature fluctuations measurements of \(C_{n}^{2}\), \({{r}_{0}}\), and \({{\theta }_{0}}\),” Theor. Appl. Climatol. 39 (1), 17–29 (1988).

    Article  Google Scholar 

  52. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. Part 2. Random Fields (Nauka, Moscow, 1978) [In Russian].

  53. V. F. Sofieva, A. S. Gurvich, and F. Dalaudier, “Gravity wave spectra parameters in 2003 retrieved from stellar scintillation measurements by GOMOS,” Geophys. Res. Lett. 36, L05811 (2009). https://doi.org/10.1029/2008GL036726

    Article  Google Scholar 

  54. V. Kan, V. F. Sofieva, and F. Dalaudier, “Anisotropy of small-scale stratospheric irregularities retrieved from scintillations of a double star a-Cru observed by GOMOS/ENVISAT,” Atmos. Meas. Tech. 5, 2713–2722 (2012). https://doi.org/10.5194/amt-5-2713-2012

    Article  Google Scholar 

  55. V. Kan, V. F. Sofieva, and F. Dalaudier, “Variable anisotropy of small-scale stratospheric irregularities retrieved from stellar scintillation measurements by GOMOS/Envisat,” Atmos. Meas. Tech. 7, 1861–1872 (2014). https://doi.org/10.5194/amt-7-1861-2014

    Article  Google Scholar 

  56. V. Kan, “Stellar scintillations in spacecraft occultation experiment for atmospheric irregularities with variable anisotropy,” Atmos. Ocean. Opt. 29, 42–55 (2016). https://doi.org/10.1134/S1024856016010085

    Article  Google Scholar 

  57. A. S. Gurvich, V. V. Vorob’ev, and O. V. Fedorova, “Determination of parameters of the spectrum of internal waves in the stratosphere from space-based observations of strong stellar scintillation,” Izv., Atmos. Ocean. Phys. 42 (4), 463–473 (2006).

    Article  Google Scholar 

  58. W. B. Hubbard, J. R. Jokipii, and B. A. Wilking, “Stellar occultation by turbulent planetary atmospheres: A wave-optical theory including a finite scale height,” Icarus 34 (2), 374–395 (1978).

    Article  Google Scholar 

  59. F. Dalaudier, V. Kan, and A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction,” Appl. Opt. 40 (6), 866–877 (2001).

    Article  Google Scholar 

  60. V. Kan, F. Dalaudier, and A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. II. Statistical properties of scintillations,” Appl. Opt. 40 (6), 878–889 (2001).

    Article  Google Scholar 

  61. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2: Multiple Scattering, Turbulence, Rough Surfaces and Remote Sensing (Academic Press, New York–San Francisco–London, 1978).

  62. M. E. Gorbunov and A. S. Gurvich, “Microlab-1 experiment: multipath effects in the lower troposphere,” J. Geophys. Res.: Atmos. D12 (103) 13.819–13.826 (1998). https://doi.org/10.1029/98JD00806

  63. M. E. Gorbunov, “Canonical transform method for processing GPS radio occultation data in lower troposphere,” Radio Sci. 37, 9-1–9-10 (2002). https://doi.org/10.1029/2000RS002592

  64. M. E. Gorbunov and K. B. Lauritsen, “Analysis of wave fields by Fourier Integral Operators and its application for radio occultations,” Radio Sci. 39, RS4010 (2004). .https://doi.org/10.1029/2003RS002971

    Article  Google Scholar 

  65. S. Sokolovskiy, W. Schreiner, Z. Zeng, D. Hunt, Y.‑C. Lin, and Y. -H. Kuo, “Observation, analysis, and modeling of deep radio occultation signals: Effects of tropospheric ducts and interfering signals,” Radio Sci. 10 (49), 954–970 (2014).

    Article  Google Scholar 

  66. O. A. Koval, M. E. Gorbunov, and V. Kan, “The fluctuation theory of radio occultation signals: geometric optical approximation of the Canonical Transform method,” IOP Conf. Ser.: Earth Environ. Sci. 231, 012029 (2019). https://doi.org/10.1088/1755-1315/231/1/012029.

  67. V. Kan, “Coherence and correlation of chromatic stellar scintillations in a spaceborne occultation experiment,” Atmos. Ocean. Opt. 17 (10), 725–734 (2004).

    Google Scholar 

  68. M. E. Gorbunov, “Ionospheric correction and statistical optimization of radio occultation data,” Radio Sci. 37 (5), 17-1–17-9 (2002). https://doi.org/10.1029/2000RS002370

  69. A. E. Hedin, “Extension of the MSIS thermospheric model into the middle and lower atmosphere,” J. Geophys. Res. 96, 1159–1172 (1991).

    Article  Google Scholar 

  70. D. C. Fritts and T.E. van Zandt, “Spectral estimates of gravity wave energy and momentum fluxes. Part I. Energy dissipation, acceleration, and constraints,” J. Atmos. Sci. 22 (22), 3688–3694 (1993).

    Google Scholar 

  71. M. J. Alexander, “Interpretations of observed climatological patterns in stratospheric gravity wave variance,” J. Geophys. Res. 103 (D8), 8627–8640 (1998).

    Article  Google Scholar 

  72. V. V. Vorob’ev and V. Kan, “Background fluctuations in the GPS-microlab-1 ionospheric radio sounding experiment,” Radiophys. Quantum Electron. 42, 451–462 (1999).

    Article  Google Scholar 

  73. K. S. W. Champion, A. E. Cole, and A. J. Kantor, Standard and Reference Atmospheres, Chapter 14 in Handbook of Geophysics and Space Environment (Air Force Geophysics Laboratory, Bedford, USA, 1985).

  74. C. Marquard and S. B. Healy, “Measurement noise and stratospheric gravity wave characteristics obtained from GPS occultation data,” J. Meteorol. Soc. Jpn. 83 (3) 417–428 (2005).

    Article  Google Scholar 

Download references

Funding

The work of V. Kan, M.E. Gorbunov, and A.V. Shmakov is supported by the Russian Foundation for Basic Research, project no. 20-05-00189 A. The work of V.F. Sofieva is supported by the Academy of Finland (center of expertise for inverse problems and the TT-AVA project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kan.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, V., Gorbunov, M.E., Shmakov, A.V. et al. Reconstruction of the Internal-Wave Parameters in the Atmosphere from Signal Amplitude Fluctuations in a Radio-Occultation Experiment. Izv. Atmos. Ocean. Phys. 56, 435–447 (2020). https://doi.org/10.1134/S0001433820050072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820050072

Keywords:

Navigation