Skip to main content
Log in

Pressure metrics and Manhattan curves for Teichmüller spaces of punctured surfaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we extend the construction of pressure metrics to Teichmüller spaces of surfaces with punctures. This construction recovers Thurston’s Riemannian metric on Teichmüller spaces. Moreover, we prove the real analyticity and convexity of Manhattan curves of finite area type-preserving Fuchsian representations, and thus we obtain several related entropy rigidity results. Lastly, relating the two topics mentioned above, we show that one can derive the pressure metric by varying Manhattan curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. V. Ahlfors, Lectures on Quasiconformal Mappings, University Lecture Series, Vol. 38, American Mathematical Society, Providence, RI, 2006.

    Google Scholar 

  2. W. Ambrose and S. Kakutani, Structure and continuity of measurable flows, Duke Mathematical Journal 9 (1942), 25–42.

    Article  MathSciNet  Google Scholar 

  3. M. Bridgeman, R. Canary, F. Labourie and A. Sambarino, The pressure metric for Anosov representations, Geometric and Functional Analysis 25 (2015), 1089–1179.

    Article  MathSciNet  Google Scholar 

  4. M. Bridgeman, R. Canary and A. Sambarino, An introduction to pressure metrics for higher Teichmüller spaces, Ergodic Theory and Dynamical Systems 38 (2018), 2001–2035.

    Article  MathSciNet  Google Scholar 

  5. L. Barreira and G. Iommi, Suspension flows over countable Markov shifts, Journal od Statistical Physics 124 (2006), 207–230.

    Article  MathSciNet  Google Scholar 

  6. C. Bishop and T. Steger, Representation-theoretic rigidity in PSL(2, R), Acta Mathematica 170 (1993), 121–149.

    Article  MathSciNet  Google Scholar 

  7. M. Burger, Intersection, the Manhattan curve, and Patterson-Sullivan theory in rank 2, International Mathematics Research Notices 1993 (1993), 217–225.

    Article  MathSciNet  Google Scholar 

  8. I. Cipriano and G. Iommi, Time change for flows and thermodynamic formalism, Nonlinearity 32 (2019), 2848–2874.

    Article  MathSciNet  Google Scholar 

  9. U. Hamenstädt, Length functions and parameterizations of Teichmüller space for surfaces with cusps, Annales Academiæ Scientiarum Fennicæ. Mathematica 28 (2003), 75–88.

    MathSciNet  MATH  Google Scholar 

  10. G. Iommi, T. Jordan and M. Todd, Recurrence and transience for suspension flows, Israel Journal of Mathematics 209 (2015), 547–592.

    Article  MathSciNet  Google Scholar 

  11. J. Jaerisch, M. Kesseböhmer and S. Lamei, Induced topological pressure for countable state Markov shifts, Stochastics and Dynamics 14 (2014), Article no. 1350016.

  12. L.-Y. Kao, Manhattan curves for hyperbolic surfaces with cusps, Ergodic Theory and Dynamical Systems 40 (2020), 1843–1874.

    Article  MathSciNet  Google Scholar 

  13. M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Modern Birkhäuser Classics, Birkhäuser, Boston, MA, 2009.

    MATH  Google Scholar 

  14. T. Kempton, Thermodynamic formalism for suspension flows over countable Markov shifts, Nonlinearity 24 (2011), 2763–2775.

    Article  MathSciNet  Google Scholar 

  15. I. Kim, Marked length rigidity of rank one symmetric spaces and their product, Topology 40 (2001), 1295–1323.

    Article  MathSciNet  Google Scholar 

  16. F. Ledrappier and O. Sarig, Fluctuations of ergodic sums for horocycle flows ond-covers of finite volume surfaces, Discrete and Continuous Dynamical Systems 22 (2008), 247–325.

    Article  MathSciNet  Google Scholar 

  17. C. McMullen, Thermodynamics, dimension and the Weil-Petersson metric, Inventiones Mathematicae 173 (2008), 365–425.

    Article  MathSciNet  Google Scholar 

  18. D. Mauldin and M. Urbański, Gibbs states on the symbolic space over an infinite alphabet, Israel Journal of Mathematics 125 (2001), 93–130.

    Article  MathSciNet  Google Scholar 

  19. D. Mauldin and M. Urbański, Graph Directed Markov Systems, Cambridge Tracts in Mathematics, Vol. 148, Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  20. J.-P. Otal and M. Peigné, Principe variationnel et groupes Kleiniens, Duke Mathematical Journal 125 (2004), 15–44.

    Article  MathSciNet  Google Scholar 

  21. F. Paulin, M. Pollicott and B. Schapira, Equilibrium states in negative curvature, Astérisque 373 (2015).

  22. M. Pollicott and R. Sharp, Weil-Petersson metrics, Manhattan curves and Hausdorff dimension, Mathematische Zeitschrifty 282 (2016), 1007–1016.

    Article  MathSciNet  Google Scholar 

  23. O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory and Dynamical Systems 19 (1999), 1565–1593.

    Article  MathSciNet  Google Scholar 

  24. O. Sarig, Phase transitions for countable Markov shifts, Communications in Mathematical Physics 217 (2001), 555–577.

    Article  MathSciNet  Google Scholar 

  25. O Sarig, Existence of Gibbs measures for countable Markov shifts, Proceedings of the American Mathematical Society 131 (2003), 1751–1758.

    Article  MathSciNet  Google Scholar 

  26. O. Sarig, Lecture notes on thermodynamic formalism for topological Markov shifts, http://www.weizmann.ac.il/math/sarigo/sites/math.sarigo/files/uploads/tdfnotes.pdf.

  27. S. V. Savchenko, Special flows constructed from countable topological Markov chains, Funktsional’nyĭ Analiz i ego Prilozheniya 32 (1998), 40–53.

    Article  MathSciNet  Google Scholar 

  28. R. Sharp, The Manhattan curve and the correlation of length spectra on hyperbolic surfaces, Mathematische Zeitschrift 228 (1998), 745–750.

    Article  MathSciNet  Google Scholar 

  29. Z. Slodkowski, Holomorphic motions and polynomial hulls, Proceedings of the American Mathematical Society 111 (1991), 347–355.

    Article  MathSciNet  Google Scholar 

  30. W. P. Thurston, Minimal stretch maps between hyperbolic surfaces, https://arxiv.org/abs/math/9801039.

  31. P. Tukia, On discrete groups of the unit disk and their isomorphisms, Annales Academiae Scientiarum Fennicae. Series A. I. Mathematica 504 (1972).

  32. P. Tukia, Extension of boundary homeomorphisms of discrete groups of the unit disk, Annales Academiae Scientiarum Fennicae. Series A. I. Mathematica 548 (1973).

  33. S. A. Wolpert, Thurston’s Riemannian metric for Teichmüller space, Journal of Differential Geometry 23 (1986), 143–174.

    Article  MathSciNet  Google Scholar 

  34. B. Xu, Incompleteness of the pressure metric on the Teichmüller space of a bordered surface, Ergodic Theory and Dynamical Systems 39 (2019), 1710–1728.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lien-Yung Kao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, LY. Pressure metrics and Manhattan curves for Teichmüller spaces of punctured surfaces. Isr. J. Math. 240, 567–602 (2020). https://doi.org/10.1007/s11856-020-2073-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2073-1

Navigation