Skip to main content
Log in

Measures of intermediate entropies for star vector fields

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that all star vector fields, including Lorenz attractors and multi-singular hyperbolic vector fields, admit the intermediate entropy property. To be precise, if X is a star vector field with htop(X) > 0, then for any h ∈ [0, htop(X)), there exists an ergodic invariant measure μ of X such that hμ(X)= h. Moreover, we show that the topological entropy is lower semi-continuous for star vector fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Abramov, On the entropy of a flow, Doklady Akademii Nauk SSSR 128 (1959), 873–875.

    MathSciNet  Google Scholar 

  2. N. Aoki, The set of Axiom A diffeomorphisms with no cycles, Boletim da Sociedade Brasileira de Matemática 23 (1992), 21–65.

    Article  MathSciNet  Google Scholar 

  3. V. Araujo, M. Pacifico, E. Pujals and M. Viana, Singular-hyperbolic attractors are chaotic, Transactions of the American Mathematical Society 361 (2009), 2431–2485.

    Article  MathSciNet  Google Scholar 

  4. F. Béguin, S. Crovisier and F. Le Roux, Construction of curious minimal uniquely ergodic homeomorphisms on manifolds: the Denjoy—Rees technique, Annales Scientifiques de l’École Normale Supérieure 40 (2007), 251–308.

    Article  MathSciNet  Google Scholar 

  5. C. Bonatti and A. da Luz, Star flows and multisingular hyperbolicity, Journal of the European Mathematical Society, to appear, https://arxiv.org/abs/1705.05799.

  6. A. da Luz, Star flows with singularities of different indices, https://arxiv.org/abs/1806.09011.

  7. S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition, Inventiones Mathematicae 164 (2006), 279–315.

    Article  MathSciNet  Google Scholar 

  8. S. Gan and D. Yang, Morse—Smale systems and horseshoes for three-dimensional singular flows, Annales Scientifiques de l’École Normale Supérieure 51 (2018), 39–112.

    Article  MathSciNet  Google Scholar 

  9. F. R. Gantmacher, Applications of the Theory of Matrices, Interscience, New York, 1959.

    Google Scholar 

  10. L. Guan, P. Sun and W. Wu, Measures of intermediate entropies and homogeneous dynamics, Nonlinearity 9 (2017), 3349–3361.

    Article  MathSciNet  Google Scholar 

  11. J. Guckenheimer, A strange, strange attractor, in The Hopf Bifurcation and its Applications, Applied Mathematical Sciences, Vol. 19, Springer, New York, 1976, pp. 368–381.

    Book  Google Scholar 

  12. F. Hahn and Y. Katznelson, On the entropy of uniquely ergodic transformations, Transactions of the American Mathematical Society 126 (1967), 335–360.

    Article  MathSciNet  Google Scholar 

  13. S. Hayashi, Diffeomorphisms in \({{\cal F}^1}(M)\) satisfy Axiom A, Ergodic Theory and Dynamical Systems 12 (1992), 233–253.

    Article  MathSciNet  Google Scholar 

  14. M. Herman, Construction d’un difféomorphisme minimal d’entropie topologique non nulle, Ergodic Theory and Dynamical Systems 1 (1981), 65–76.

    Article  MathSciNet  Google Scholar 

  15. M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583, Springer, Berlin—New York, 1977.

    Google Scholar 

  16. A. Katok, Lyapunov exponents, entropy and periodic points of diffeomorphisms, Institut des Hautes Études Scientifiques. Publications Mathematiques 51 (1980), 137–173.

    Article  Google Scholar 

  17. A. Katok and L. Mendoza, Dynamical systems with nonuniformly hyperbolic behavior, in Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, Vol. 54, Cambridge University Press, Cambridge, 1995, pp. 657–700.

    Google Scholar 

  18. M. Li, S. Gan and L. Wen, Robustly transitive singular sets via approach of extended linear Poincaré flow, Discrete and Continuous Dynamical Systems 13 (2005), 239–269.

    Article  MathSciNet  Google Scholar 

  19. S. Liao, Obstruction sets. II, Beijing Daxue Xuebao 2 (1981), 1–36.

    MathSciNet  Google Scholar 

  20. S. Liao, On (η, d)-contractable orbits of vector fields, Systems Science and Mathematical Sciences 2 (1989), 193–227.

    MathSciNet  Google Scholar 

  21. R. Mañé, An ergodic closing lemma, Annals of Mathematics 116 (1982), 503–540.

    Article  MathSciNet  Google Scholar 

  22. R. Metzger and C. A. Morales, On sectional-hyperbolic systems, Ergodic Theory and Dynamical Systems 28 (2008), 1587–1597.

    Article  MathSciNet  Google Scholar 

  23. C. A. Morales, M. J. Pacifico and E. R. Pujals, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Annals of Mathematics 160 (2004), 375–432.

    Article  MathSciNet  Google Scholar 

  24. M. J. Pacifico, F. Yang and J. Yang, Entropy theory for sectional hyperbolic flows, https://arxiv.org/abs/1901.07436.

  25. W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astŕisque 187-188 (1990).

  26. C. Pugh and M. Shub, Ergodic elements of ergodic actions, Compositio Mathematica 23 (1971), 115–122.

    MathSciNet  Google Scholar 

  27. Y. Shi, S. Gan and L. Wen, On the singular hyperbolicity of star flows, Journal of Modern Dynamics 8 (2014), 191–219.

    Article  MathSciNet  Google Scholar 

  28. P. Sun, Measures of intermediate entropies for skew product diffeomorphisms, Discrete and Continuous Dynamical Systems 27 (2010), 1219–1231.

    Article  MathSciNet  Google Scholar 

  29. P. Sun, Zero-entropy invariant measures for skew product diffeomorphisms, Ergodic Theory and Dynamical Systems 30 (2010), 923–930.

    Article  MathSciNet  Google Scholar 

  30. P. Sun, Density of metric entropies for linear toral automorphisms, Dynamical Systems 27 (2012), 197–204.

    Article  MathSciNet  Google Scholar 

  31. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79, Springer, New York—Berlin, 1982.

    Google Scholar 

  32. L. Wen, Differentiable Dynamical Systems, Graduate Studies in Mathematics, Vol. 173, American Mathematical Society, Providence, RI, 2016.

    Google Scholar 

  33. W. Wu, D. Yang and Y. Zhang, On the growth rate of periodic orbits for vector fields, Advances in Mathematics 346 (2019), 170–193.

    Article  MathSciNet  Google Scholar 

  34. J. Yang, Topological entropy of Lorenz-like flows, https://arxiv.org/abs/1412.1207.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Additional information

M. Li is supported by NSFC 11571188 and the Fundamental Research Funds for the Central Universities.

Y. Shi is supported by NSFC 11701015 and Young Elite Scientists Sponsorship Program by CAST.

S. Wang is partially supported by NSFC 11771026, 11471344 and acknowledges PIMS-CANSSI postdoctoral fellowship.

X. Wang is the corresponding author, and supported by NSFC 11701366 and Shanghai Sailing Program 17YF1409300.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Shi, Y., Wang, S. et al. Measures of intermediate entropies for star vector fields. Isr. J. Math. 240, 791–819 (2020). https://doi.org/10.1007/s11856-020-2080-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2080-2

Navigation