Skip to main content
Log in

Investigation of Energy Saving Potential in Buildings Using Novel Developed Lightweight Concrete

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, three different composite materials were produced from mixtures of natural and waste materials in different proportions. The produced composites were used to determine the insulation thickness of exterior walls of buildings located in 12 provinces selected from the four different climate zones of Turkey. The selection of provinces was made according to Turkish standard TS 825. The produced materials are thermal insulation elements that can be used instead of construction elements, such as brick, on the exterior walls of the buildings. In this study, only the heating of the buildings was considered and the number of heating degree days of the provinces was taken into account to determine the insulation thickness. The life cycle cost analysis method was used to determine the optimum insulation thickness. It was determined that the optimum insulation thickness values calculated for four different fuel types for the selected provinces varied between 0.170 m and 1.401 m. The annual energy requirement for the unit surface area of the exterior walls of the insulated buildings was determined to be 11,213–965,715 kJ·m−2 per year. Moreover, it was determined that the insulation costs ranged between $ 22,841 m−2 and $ 114,841 m−2, and the payback period ranged from approximately 2.5 to 6.5 years. It was concluded that using these new types of materials in the determined regions were advantageous in terms of thermal insulation, fire resistance, mechanical properties, production costs, extra labor costs, and optimum insulation thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Ayear,H :

Difference of annual total heating cost ($ m2·-year)

C:

Annual energy cost for unit surface without insulation ($m2·-year)

CA,H :

Total heating cost ($ m2 ·year)

Cfuel :

Cost of the fuel ($m3, $ kg1)

Cins. :

Cost of the insulant ($ m2)

COP:

Coefficient of performance

Ct,H :

Total heating cost of the insulated building ($ m2-year)

Cy:

Cost of the insulant ($ m3)

DD:

Degree-day value (°C-days)

Eyear,H :

Annual energy need for heating (J·m2·-year)

g:

Inflation rate (%)

HDD:

Heating degree-day value (°C-days)

Hu:

Low heat value of the fuel (J·kg1, J·m3)

i:

Interest rate (%)

k:

Thermal conductivity of insulation (W·m1·K1)

LPG:

Liquefied petroleum gas

N:

Lifetime (year)

Spp:

Payback period (year)

PWF:

Present Worth Factor

q:

Annual heat loss (Wm2)

r:

Actual interest rate

R:

Heat transfer resistance (m2·K W1)

Rins. :

Thermal resistance of the insulant (m2·K W1)

Ro :

Outside heat transfer resistance (m2·K W1)

Rw :

Thermal resistance of wall layers without insulation (m2·K W1)

Rw,t :

Thermal resistance of non-insulated wall (m2·K W1)

T:

Temperature (K)

U:

Total heat transfer coefficient (W·m2·K1)

X:

Insulation thickness (m)

Xopt :

Optimum insulation (total) thickness (m)

References

  1. N.A. Kurekci, Energy Build. 118, 197 (2016)

    Article  Google Scholar 

  2. A. Aytac, U.T. Aksoy, J. Gazi Univ. Fac. Eng. Archit. 21, 753 (2006)

    Google Scholar 

  3. F. Koçyiğit, V.V. Çay, Int. J. Thermophys. 41(10), 1 (2020)

    Article  Google Scholar 

  4. Ş Koçyiğit, V.V. Çay, Eur. J. Tech. 9(2), 209 (2019)

    Google Scholar 

  5. O. Soykan, C. Özel, The Effect of Marble Dust Grain Size on Properties of Polymer Concrete, (International Construction Congress-ICOCNC2012, October 11–13 (Isparta, Turkey), 2012)

    Google Scholar 

  6. F. Koksal, Y. Sahin, O. Gencel, Constr. Build. Mater. 257, 119547 (2020)

    Article  Google Scholar 

  7. L. Gündüz, A. Sarıışık, M.U. Davraz, O. Çankıran, SDÜ-ISBAS, Ğ, 14 (1998).

  8. O. Sengül, S. Azizi, F. Karaosmanoglu, M.A. Tasdemir (2011) https://doi.org/https://doi.org/10.1016/j.enbuild.2010.11.008.

  9. F. Koksal, E. Mutluay, O. Gencel, Constr. Build. Mater. 236, 117789 (2020)

    Article  Google Scholar 

  10. R. Demirboğa, R. Gül, Eng. Build. 35, 1155 (2003)

    Article  Google Scholar 

  11. O.H. Oren, A. Gholampour, O. Gencel, T. Ozbakkaloglu, Constr. Build. Mater. 238, 117774 (2020)

    Article  Google Scholar 

  12. D. Shastri, H.S. Kim, Constr. Build. Mater. 60, 1 (2014)

    Article  Google Scholar 

  13. M. Sutcu, J. J. del Coz Díaz, F. P. Á. Rabanal, O. Gencel, S. Akkurt, Energy Build. 75, 96 (2014).

  14. O. Gencel, J. J. del Coz Diaz, M. Sutcu, F. Koksal, F. A. Rabanal, G. Martinez-Barrera, W. Brostow, Energy Build. 70, 135 (2014).

  15. K.A. Al-Sallal, Renew. Energy 28, 603 (2003)

    Article  Google Scholar 

  16. A. Bolatturk, Appl. Therm. Eng. 26(11), 1301 (2006)

    Article  Google Scholar 

  17. J. Yu, C. Yang, L. Tian, D. Liao, Appl. Energy 86, 2520 (2009)

    Article  Google Scholar 

  18. X. Han, Y. Geng, H. Zhang, L. Shi, J. Build. Eng. 10, 2020 (1853)

    Google Scholar 

  19. X. Liu, Y. Chen, H. Ge, P. Fazio, G. Chen, Proc. Eng. 121, 1008 (2015)

    Article  Google Scholar 

  20. A. Ustaoglu, K. Kurtoglu, O. Gencel, F. Kocyigit, J. Environ. Manag. 268, 110732 (2020)

    Article  Google Scholar 

  21. I. Axaopolos, P. Axaopolos, G. Panayiotou, S. Kalogirou, J. Gelegenis, Energy 90, 939 (2015)

    Article  Google Scholar 

  22. S. Liu, K. Zhu, S. Cui, X. Shen, G. Tan, Energy Build. 177, 385 (2018)

    Article  Google Scholar 

  23. A. Ucar, F. Balo, Renew. Energy 35, 88 (2010)

    Article  Google Scholar 

  24. L. La Fleur, P. Rohdin, B. Moshfegh, Energy Build. 203, 109438 (2019)

    Article  Google Scholar 

  25. P.G. Collishaw, J.R.G. Evans, J. Mater. Sci. 29, 2261 (1994)

    Article  ADS  Google Scholar 

  26. F. Koçyiğit, "Evaluation of tragacanth added bims and cement mixtures as a new building material", PhD Thesis. (Fırat University, Elazig, 2012).

  27. F. Koçyiğit, Int. J. Thermophys. (2020). https://doi.org/10.1007/s10765-020-2620-3

    Article  Google Scholar 

  28. M. Záleská, M. Pavlikova, J. Pokorný, O. Jankovský, Z. Pavlík, R. Černý, Constr. Build. Mater. 180, 1 (2018)

    Article  Google Scholar 

  29. J. J. del Coz Díaz, F. P. Á. Rabanal, P. J. G. Nieto, J. D. Hernández, B. R. Soria, J. M. Pérez-Bella, Constr. Build. Mater. 40, 543 (2013)

  30. J. J. del Coz Díaz, F. P. Álvarez-Rabanal, O. Gencel, P. G. Nieto, M. Alonso-Martínez, , A. Navarro-Manso, B. Prendes-Gero, Energy Build. 70, 206 (2014).

  31. TS 825, https://www1.mmo.org.tr/resimler/dosya_ekler/cf3e258fbdf3eb7_ek.pdf

  32. Seasonal average temperature values of the selected cities, https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A, Access Date: 14.06.2020

  33. Degree-day values of selected cities, https://www.mgm.gov.tr/veridegerlendirme/gun-derece.aspx

  34. TSEN 771–1+A1, Turkish Standard Institute, Specification for masonry units-Part1: Clay masonry, https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073102102073073071078089111077053098

  35. Interior and exterior plaster properties, https://www.izoder.org.tr/dosyalar/hesapdegerleri.pdf

  36. Price of Natural Gas, https://www.igdas.com.tr/serbest-tuketici-satis/

  37. Price of Coal, https://www.tki.gov.tr/depo/file/2020HazirananalizliFiyatListesi.pdf

  38. Price of Fuel oil and LPG, https://tppd.com.tr/tr/akaryakit-fiyatlari?id=25

  39. Inflation and interest rate, https://www.tcmb.gov.tr/

  40. R.G. Oğulata, Renew. Sustain. Energy Rev. 6, 471 (2002)

    Article  Google Scholar 

  41. N. Sisman, E. Kahya, N. Aras, H. Aras, Energy Policy 35, 5151 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Ünal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akan, A.E., Ünal, F. & Koçyiğit, F. Investigation of Energy Saving Potential in Buildings Using Novel Developed Lightweight Concrete. Int J Thermophys 42, 4 (2021). https://doi.org/10.1007/s10765-020-02761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02761-1

Keywords

Navigation