Skip to main content

Advertisement

Log in

Thermoelectric and Piezoelectric Properties in Half-Heusler Compounds TaXSn (X = Co, Rh and Ir) Based on Ab Initio Calculations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper, we report a theoretical study of the structural, electronic, thermoelectric and piezoelectric properties of TaXSn (X = Co, Rh and Ir) half-Heusler compounds crystallizing with cubic MgAgAs-type structure. We have made a quantitative evaluation of thermoelectric figure of merit (ZT) and the electromechanical coupling coefficient (k14) of these compounds. Accordingly, we intend to combine the first-principles band structure calculations using (DFT)-based FP-LAPW approach and the semi-classical Boltzmann transport theory within constant scattering time approximation (CSTA) to interpret and predict the thermoelectric performance (ZTe) without the lattice thermal conductivity as a function of the chemical potential at various temperatures. Further, to obtain a reasonable estimate for (ZT) with the intrinsic lattice thermal conductivity, we have calculated the relaxation time (τ) at various temperatures using Bardeen–Shockley theory. Finally, for predicting piezoelectric coefficients, we have employed the modern theory of polarization as provided by density-functional perturbation theory (DFPT) based on plane waves and pseudo-potentials (PP-PW). Our key result is that these half-Heusler semiconductors are attractive for practical applications in energy-harvesting technology, which has a high (ZT) and (k14) of 0.89 and 0.25, respectively, at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Chibani, O. Arbouche, K. Amara, M. Zemouli, Y. Benallou, Y. Azzaz, B. Belgoumène, M. Elkeurti, M. Ameri, J. Comput. Electron. 16, 765–775 (2017)

    Google Scholar 

  2. S. Chibani, O. Arbouche, M. Zemouli, Y. Benallou, K. Amara, N. Chami, M. Ameri, M. El Keurti, Comput. Condens. Matter 16, e00312 (2018)

    Google Scholar 

  3. S. Chibani, O. Arbouche, M. Zemouli, K. Amara, Y. Benallou, Y. Azzaz, B. Belgoumène, A. Bentayeb, M. Ameri, J. Electron. Mater. 47, 196–204 (2018)

    ADS  Google Scholar 

  4. R. Yan, W. Xie, B. Balke, G. Chen, A. Weidenkaff, Realizing p-type NbCoSn half-Heusler compounds with enhanced thermoelectric performance via Sc substitution. Sci. Technol. Adv. Mater. (2020). https://doi.org/10.1080/14686996.2020.1726715

    Article  Google Scholar 

  5. X. Zhang, Yu. Liping, A. Zakutayev, A. Zunger, Adv. Funct. Mater. 22, 1425–1435 (2012)

    Google Scholar 

  6. S. Kacimi, H. Mehnane, A. Zaoui, J. Alloy. Compd. 587, 451–458 (2014)

    Google Scholar 

  7. A. Roy, J.W. Bennett, K.M. Rabe, D. Vanderbilt, Phys. Rev. Lett 109, 037602 (2012)

    ADS  Google Scholar 

  8. Z.W. Wang, G.T. Wang, Phys. Lett. A 381, 2856 (2017)

    ADS  Google Scholar 

  9. J. Wei, G. Wang, J. Alloys Compd. 757, 118–123 (2018)

    Google Scholar 

  10. R. Gautier, X. Zhang, H. Linhua, Y. Liping, Y. Lin, T.O.L. Sunde, D. Chon, K.R. Poeppelmeier, A. Zunger, Nat. Chem 7, 308–316 (2015)

    Google Scholar 

  11. A. Zakutayev, X. Zhang, A. Nagaraja, L. Yu, S. Lany, T.O. Mason, D.S. Ginley, A. Zunger, J. Am. Chem. Soc. 135, 10048–10054 (2013)

    Google Scholar 

  12. E. Haque, M.A. Hossain, Results Phys. 10, 458–465 (2018)

    ADS  Google Scholar 

  13. K. Kaur, Ceram. Int. 43, 15160–15166 (2017)

    Google Scholar 

  14. K. Kaur, R. Kumar, Phys. Lett. A 381, 3760–3765 (2017)

    ADS  Google Scholar 

  15. S. Bhattacharya, G.K.H. Madsen, J. Mater. Chem. C 4, 11261 (2016)

    Google Scholar 

  16. D.M. Hoat, Comput. Mater. Sci. 159, 470–477 (2019)

    Google Scholar 

  17. E. Sjöstedt, L. Nordström, D.J. Singh, Solid State Commun 114, 15–20 (2000)

    ADS  Google Scholar 

  18. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133-1138 (1965)

    ADS  Google Scholar 

  19. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Knasnicka, and J.Lunitz,Wien2k, An Augmented Plane Wave Plus Local Orbital Programme for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, 2001.

  20. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    ADS  Google Scholar 

  21. F. Tran, P. Blaha, M. Betzinger, S. Blügel, Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Google Scholar 

  22. N.A. Sinitsyn, J. Phys. Condens. Matter 20, 023201 (2008)

    ADS  Google Scholar 

  23. G.K. Madsen, J. Carrete, M.J. Verstraete, Comput. Phys. Commun. 231, 140–145 (2018)

    ADS  Google Scholar 

  24. J. Bardeen, W. Shockley, Phys. Rev. 80, 72 (1950)

    ADS  Google Scholar 

  25. G.A. Slack, J. Phys. Chem. Solids 34, 321 (1973)

    ADS  Google Scholar 

  26. A. Dal Corso, Phys. Rev. B 64, 235118 (2001)

    ADS  Google Scholar 

  27. X. Gonze, C. Lee, Phys. Rev. B 55, 10355 (1997)

    ADS  Google Scholar 

  28. X. Gonze et al., Comput. Mater. Sci. 25, 478 (2002)

    Google Scholar 

  29. X. Gonze et al., Comput. Phys. Commun. 180, 2582 (2009)

    ADS  Google Scholar 

  30. X. Gonze, F. Jollet et al., Comput. Phys. Commun. 205, 106–131 (2016)

    ADS  Google Scholar 

  31. G. Arlt, P. Quadflieg, Phys. Status Solidi 25, 323 (1968)

    Google Scholar 

  32. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  33. J.D. Pack, H.J. Monkhorst, Phys. Rev. B 16, 1748 (1977)

    ADS  Google Scholar 

  34. A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos, Phys. Rev. B 41, 1227 (1990)

    ADS  Google Scholar 

  35. N.J. Ramer, A.M. Rappe, Phys. Rev. B 59, 12471 (1999)

    ADS  Google Scholar 

  36. J. P. Perdew and Y. Wang, [Phys. Rev. B 45, 13244 (1992)]. Phys. Rev. B 98, 079904 (2018)

  37. F.D. Murnaghan, Proc. Nat. Acad. Sci. USA 30, 244–247 (1944)

    ADS  Google Scholar 

  38. D.J. Singh, Phys. Rev. B 81, 195217 (2010)

    ADS  Google Scholar 

  39. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, The open quantum materials database (OQMD). JOM 65, 1501–1509 (2013)

    Google Scholar 

  40. H. Nowotny, K. Bachmayer, Monatsh Chem 81, 488 (1950)

    Google Scholar 

  41. Predicted lead-free perovskites for solar cells, R Ali, G-J Hou, Z-G Zhu, Q-B Yan, Q-R Zheng, G Su. Chem. Mater. 30, 718–728 (2018)

    Google Scholar 

  42. K. Ding, B. Chen, Y. Li, Y. Zhang, Z. Chen, J. Mater. Chem. A 2, 8294–8303 (2014)

    Google Scholar 

  43. G.A. Naydenov, P.J. Hasnip, V. Lazarov, M. Probert, J. Phys. Mater. 2, 035002 (2019)

    Google Scholar 

  44. X. Wu, D. Vanderbilt, D.R. Hamann, Phys. Rev. B 72, 035105 (2005)

    ADS  Google Scholar 

  45. M. de Jong, W. Chen, H. Geerlings, M. Asta, K.A. Persson, A database to enable discovery and design of piezoelectric properties. Sci. Data 2, 150053 (2015). https://doi.org/10.1038/sdata.2015.53

    Article  Google Scholar 

  46. S. Li, H. Zhu, J. Mao et al., ACS Appl. Mater. Interfaces 11, 41321–41329 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Arbouche.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almaghbash, Z.A.A.R., Arbouche, O., Dahani, A. et al. Thermoelectric and Piezoelectric Properties in Half-Heusler Compounds TaXSn (X = Co, Rh and Ir) Based on Ab Initio Calculations. Int J Thermophys 42, 5 (2021). https://doi.org/10.1007/s10765-020-02755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02755-z

Keywords

Navigation