Skip to main content
Log in

Optimized Design for a Device to Measure Thermal Contact Conductance During Friction Stir Welding

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Friction stir welding (FSW) is a solid-state welding process that is finding increasing use in a variety of industries, owing to its ability to create high-quality welds with less heat input than fusion welding. While the modeling of FSW has been an active effort for at least 15 years, two input parameters, namely the friction coefficient and the heat transfer coefficient, are still adjustable quantities that are difficult to measure. This lack of information compromises the predictive capability of FSW models. While the modeling of friction between the tool and workpiece remains a complex task, the measurement of heat transfer should be possible, but has not been adequately addressed because of the difficulty of accessing the relevant interface with thermocouples. This paper presents a multi-layered frequency-domain thermoreflectance (FDTR) method and transducer design to measure the heat transfer coefficient between the spinning tool and the workpiece. Due to constraints of the welding process, a multi-layered structure is needed for a useable measurement to maximize the heat flow from the modulated heating surface through the heat transfer interface into the welded workpiece. An analytical 2D thermal quadrupole model is shown to be useful in determining layer properties. A multi-layered structure for a specific tool design is validated using COMSOL and optimized. This process can be used to determine the ideal transducer structure to maximize the signal from an FDTR measurement during a friction stir welding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

Available upon request.

Code availability

Available upon request.

References

  1. M. Mehta, K. Chatterjee, A. De, Monitoring torque and traverse force in friction stir welding from input electrical signatures of driving motors. Sci Technol Weld Join 18, 191–197 (2013). https://doi.org/10.1179/1362171812y.0000000084

    Article  Google Scholar 

  2. C.S.W.G.K. Padhy, C.S.W.G.K. Padhy, Friction stir based welding and processing technologies—processes, parameters, microstructures and applications: a review. J Mater Sci Technol 34, 1–38 (2018). https://doi.org/10.1016/j.jmst.2017.11.029

    Article  Google Scholar 

  3. I. M. Norris, W. M. Thomas, J. Martin, and D. J. Staines, “Friction Stir Welding: Processes and Recent Developments.” https://www.twi-global.com/technical-knowledge/published-papers/friction-stir-welding-process-variants-and-recent-industrial-developments-October-2007.aspx (Accessed Jul. 18, 2020)

  4. R.S. Mishra, Z. Ma, Friction stir welding and processing. Mater Sci Eng R Rep 50, 1–78 (2005)

    Article  Google Scholar 

  5. P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers, Friction stir welding of aluminium alloys. Int Mater Rev 54(2), 49–93 (2009). https://doi.org/10.1179/174328009x411136

    Article  Google Scholar 

  6. A.C.F. Silva, J. De Backer, G. Bolmsjö, Temperature measurements during friction stir welding. Int J Adv Manuf Technol 88, 2899–2908 (2017). https://doi.org/10.1007/s00170-016-9007-4

    Article  Google Scholar 

  7. S. Verma, J. P. Misra, and M. Gupta, “Study of Temperature Distribution During FSW of Aviation Grade AA6082,” in Manufacturing Engineering, 2019, pp. 185–202

  8. A Fehrenbacher, JR Schmale, MR Zinn, FE Pfefferkorn. Measurement of Tool-Workpiece Interface Temperature Distribution in Friction Stir Welding. J Manuf Sci Eng. 2014. https://doi.org/10.1115/1.4026115

  9. W.J. Arbegast, A flow-partitioned deformation zone model for defect formation during friction stir welding. Scr Mater 58(5), 372–376 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.031

    Article  Google Scholar 

  10. M. Miles, U. Karki, Y. Hovanski, Temperature and material flow prediction in friction-stir spot welding of advanced high-strength steel. JOM 66(10), 2130–2136 (2014). https://doi.org/10.1007/s11837-014-1125-6

    Article  Google Scholar 

  11. Y.J. Chao, X. Qi, W. Tang, Heat transfer in friction stir welding—experimental and numerical studies. J Manuf Sci Eng 125, 138–145 (2003). https://doi.org/10.1115/1.1537741

    Article  Google Scholar 

  12. M. Khandkar, J.A. Khan, A.P. Reynolds, Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci Technol Weld Join 8(3), 165–174 (2003)

    Article  Google Scholar 

  13. M. Yu, W.Y. Li, J.L. Li, Y.J. Chao, Modelling of entire friction stir welding process by explicit finite element method. Mater Sci Technol 28(7), 812–817 (2012). https://doi.org/10.1179/1743284711y.0000000087

    Article  Google Scholar 

  14. SB Aziz, MW Dewan, DJ Huggett, MA Wahab, AM Okeil, TW Liao. A Fully Coupled Thermomechanical Model of Friction Stir Welding (FSW) and Numerical Studies on Process Parameters of Lightweight Aluminum Alloy Joints. Acta Metall Sin Engl Lett. 2018. https://doi.org/10.1007/s40195-017-0658-4

  15. T Nakamura, T Obikawa, E Yukutake, S Ueda, I Nishizaki. Tool Temperature and Process Modeling of Friction Stir Welding. Mod Mech Eng. 2018. https://doi.org/10.4236/mme.2018.81006

  16. E. dos S. Magalhaes, CP da Silva, ALF Lima e Silva, SMM Lima e Silva. An alternative approach to thermal analysis using inverse problems in aluminum alloy welding. Int J Numer Methods Heat Fluid Flow. 2017. https://doi.org/10.1108/hff-03-2016-0106

  17. N. Contuzzi, S.L. Campanelli, G. Casalino, A.D. Ludovico, On the role of the thermal contact conductance during the Friction Stir Welding of an AA5754-H111 butt joint. Appl Therm Eng 104, 263–273 (2016). https://doi.org/10.1016/j.applthermaleng.2016.05.071

    Article  Google Scholar 

  18. J Hattel, M Stolpe, A Larsen. Estimating the workpiece-backing plate heat transfer coefficient in friction stirwelding. Eng Comput. 2012. https://doi.org/10.1108/02644401211190573

  19. R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction-stir welding—Process, weldment structure and properties. Prog Mater Sci 53(6), 980–1023 (2008). https://doi.org/10.1016/j.pmatsci.2008.05.001

    Article  Google Scholar 

  20. C.C. Tutum, K. Deb, J.H. Hattel, Multi-criteria optimization in friction stir welding using a thermal model with prescribed material flow. Mater Manuf Process 28, 816–822 (2013)

    Article  Google Scholar 

  21. P Biswas, NR Mandal. Effect of Tool Geometries on Thermal History of FSW of AA1100. Weld J. 2011. 90. 129.s-135.s.

  22. BG Kıral, M Tabanoğlu. HT Serindağ. Finite Element Modeling of Friction Stir Welding in Aluminum Alloys Joint. Math Comput Appl. 2013. https://doi.org/10.3390/mca18020122

  23. T. Dickerson, Q. Shi, H.R. Shercliff, “Heat flow into friction stir welding tools”, in 4th international symposium on friction stir welding (Utah, Park City, 2003), pp. 14–16

    Google Scholar 

  24. Y. Pan, D. Lados, Friction stir welding in wrought and cast aluminum alloys: heat transfer modeling and thermal history analysis. Metall Mater Trans Part A 48, 722–734 (2017). https://doi.org/10.1007/s11661-016-3865-0

    Article  ADS  Google Scholar 

  25. L. Shi, C.S. Wu, Transient model of heat transfer and material flow at different stages of friction stir welding process. J Manuf Process 25, 323–339 (2017). https://doi.org/10.1016/j.jmapro.2016.11.008

    Article  Google Scholar 

  26. M. Rosochowska, K. Chodnikiewicz, R. Balendra, A new method of measuring thermal contact conductance. J Mater Process Technol 145(2), 207–214 (2004). https://doi.org/10.1016/s0924-0136(03)00671-x

    Article  Google Scholar 

  27. M.Z.H. Khandkar, J.A. Khan, A.P. Reynolds, M.A. Sutton, Predicting residual thermal stresses in friction stir welded metals. J Mater Process Technol 174(1), 195–203 (2006). https://doi.org/10.1016/j.jmatprotec.2005.12.013

    Article  Google Scholar 

  28. H Schmidt, J Hattel. A local model for the thermomechanical conditions in friction stir welding. Model Simul Mater Sci Eng. 2004. https://doi.org/10.1088/0965-0393/13/1/006

  29. M Song, R. Kovacevic. Heat transfer modelling for both workpiece and tool in the friction stir welding process: A coupled model. Proc Inst Mech Eng. Part B J Eng Manuf. 2004. https://doi.org/10.1243/095440504772830174

  30. M.R. Sonne, C.C. Tutum, J.H. Hattel, A. Simar, B. de Meester, The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3. J Mater Process Technol 213(3), 477–486 (2013). https://doi.org/10.1016/j.jmatprotec.2012.11.001

    Article  Google Scholar 

  31. V. Soundararajan, S. Zekovic, R. Kovacevic, Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061. Int J MachTools Manuf 45(14), 1577–1587 (2005). https://doi.org/10.1016/j.ijmachtools.2005.02.008

    Article  Google Scholar 

  32. G.A. Moraitis, G.N. Labeas, Residual stress and distortion calculation of laser beam welding for aluminum lap joints. J Mater Process Technol 198(1), 260–269 (2008). https://doi.org/10.1016/j.jmatprotec.2007.07.013

    Article  Google Scholar 

  33. M. Boukraa, N. Lebaal, A. Mataoui, A. Settar, M. Aissani, N. Tala-Ighil, Friction stir welding process improvement through coupling an optimization procedure and three-dimensional transient heat transfer numerical analysis. J Manuf Process 34, 566–578 (2018). https://doi.org/10.1016/j.jmapro.2018.07.002

    Article  Google Scholar 

  34. V Farajkhah, CG Soares. Finite element study on the ultimate strength of aluminum plates joined by friction stir welding in Progress in the Analysis and Design of Marine Structures, CRC Press. 2017. pp. 609–616

  35. M. Bachmann, J. Carstensen, L. Bergmann, J. dos Santos, C. Wu, M. Rethmeier, Numerical simulation of thermally induced residual stresses in friction stir welding of aluminum alloy 2024-T3 at different welding speeds. Int J Adv Manuf Technol 91, 1443–1452 (2017). https://doi.org/10.1007/s00170-016-9793-8

    Article  Google Scholar 

  36. T Nakamura, T Obikawa, I Nishizaki, M Enomoto, Z Fang. Friction Stir Welding of Non-Heat-Treatable High-Strength Alloy 5083-O. Metals. https://doi.org/10.3390/met8040208

  37. G. Buffa, A. Ducato, L. Fratini, Numerical procedure for residual stresses prediction in friction stir welding. Finite Elem Anal Des 47(4), 470–476 (2011). https://doi.org/10.1016/j.finel.2010.12.018

    Article  Google Scholar 

  38. N Babu, N Karunakaran, V Balasubramanian. Numerical predictions and experimental investigation of the temperature distribution of friction stir welded AA 5059 aluminium alloy joints. Int J Mater Res. 2017. https://doi.org/10.3139/146.111448

  39. M.I. Costa, C. Leitão, D.M. Rodrigues, Parametric study of friction stir welding induced distortion in thin aluminium alloy plates: a coupled numerical and experimental analysis. Thin Walled Struct 134, 268–276 (2019). https://doi.org/10.1016/j.tws.2018.10.027

    Article  Google Scholar 

  40. C.C. Tutum, J.H. Hattel, Numerical optimisation of friction stir welding: review of future challenges. Sci Technol Weld Join 16(4), 318–324 (2011)

    Article  Google Scholar 

  41. P.A. Colegrove, H.R. Shercliff, Experimental and numerical analysis of aluminium alloy 7075-T7351 friction stir welds. Sci Technol Weld Join 8, 360–368 (2003). https://doi.org/10.1179/136217103225005534

    Article  Google Scholar 

  42. A. Al-Roubaiy, S. Nabat, A. Batako, Experimental and theoretical analysis of friction stir welding of Al-Cu joints. Int J Adv Manuf Technol 71, 1631–1642 (2014). https://doi.org/10.1007/s00170-013-5563-z

    Article  Google Scholar 

  43. B. Haddag, S. Atlati, M. Nouari, M. Zenasni, Analysis of the heat transfer at the tool–workpiece interface in machining: determination of heat generation and heat transfer coefficients. Heat Mass Transf 51(10), 1355–1370 (2015). https://doi.org/10.1007/s00231-015-1499-1

    Article  ADS  Google Scholar 

  44. V. Norouzifard, M. Hamedi, Experimental determination of the tool–chip thermal contact conductance in machining process. Int J Mach Tools Manuf 84, 45–57 (2014). https://doi.org/10.1016/j.ijmachtools.2014.04.003

    Article  Google Scholar 

  45. R. Dou, T. Ge, X. Liu, Z. Wen, Effects of contact pressure, interface temperature, and surface roughness on thermal contact conductance between stainless steel surfaces under atmosphere condition. Int J Heat Mass Transf 94, 156–163 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.069

    Article  Google Scholar 

  46. P. Zhang, Y. Xuan, Q. Li, A high-precision instrumentation of measuring thermal contact resistance using reversible heat flux. Exp Therm Fluid Sci 54, 204–211 (2014). https://doi.org/10.1016/j.expthermflusci.2013.12.012

    Article  Google Scholar 

  47. X. Zhang, P.Z. Cong, M. Fujii, A Study on Thermal Contact Resistance at the Interface of Two Solids. Int J Thermophys 27(3), 880–895 (2006). https://doi.org/10.1007/s10765-006-0064-z

    Article  ADS  Google Scholar 

  48. B. Sponagle, D. Groulx, Measurement of thermal interface conductance at variable clamping pressures using a steady state method. Appl Therm Eng 96, 671–681 (2016). https://doi.org/10.1016/j.applthermaleng.2015.12.010

    Article  Google Scholar 

  49. T. Tong, A. Majumdar, Reexamining the 3-omega technique for thin film thermal characterization. Rev Sci Instrum 77(10), 104902 (2006). https://doi.org/10.1063/1.2349601

    Article  ADS  Google Scholar 

  50. H.-C. Chien, D.-J. Yao, M.-J. Huang, T.-Y. Chang, Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film. Rev Sci Instrum 79(5), 054902 (2008). https://doi.org/10.1063/1.2927253

    Article  ADS  Google Scholar 

  51. S.-M. Lee et al., Thermal conductivity and thermal boundary resistances of ALD Al2O3 films on Si and Sapphire. Int J Thermophys 38(12), 176 (2017). https://doi.org/10.1007/s10765-017-2308-5

    Article  Google Scholar 

  52. C. Fieberg, R. Kneer, Determination of thermal contact resistance from transient temperature measurements. Int J Heat Mass Transf 51(5), 1017–1023 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.004

    Article  MATH  Google Scholar 

  53. N.D. Milošević, M. Raynaud, K.D. Maglić, Simultaneous estimation of the thermal diffusivity and thermal contact resistance of thin solid films and coatings using the two-dimensional flash method. Int J Thermophys 24(3), 799–819 (2003). https://doi.org/10.1023/a:1024000602687

    Article  Google Scholar 

  54. N.D. Milošević, Determination of transient thermal interface resistance between two bonded metal bodies using the laser-flash method. Int J Thermophys 29(6), 2072–2087 (2008). https://doi.org/10.1007/s10765-008-0378-0

    Article  ADS  Google Scholar 

  55. K. Kagata, K. Kageyama, S. Kinoshita, A. Yoshida, Evaluation of thermal contact resistance between two solid surfaces using photoacoustic technique. Int J Thermophys 41(9), 131 (2020). https://doi.org/10.1007/s10765-020-02717-5

    Article  ADS  Google Scholar 

  56. F. Mercuri et al., Depth-resolved analysis of double-layered cultural heritage artifacts by pulsed thermography. Int J Thermophys 41, 6 (2019). https://doi.org/10.1007/s10765-019-2587-0

    Article  ADS  Google Scholar 

  57. P. Jiang, X. Qian, R. Yang, Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J Appl Phys 124, 161103 (2018). https://doi.org/10.1063/1.5046944

    Article  ADS  Google Scholar 

  58. K.B. Myers, P.R. Gaddam, X. Ding, V. Kochergin, S.T. Huxtable, H.D. Robinson, Measuring thermal conductivity with magnitude-dependent frequency-domain thermoreflectance using modulated CW Lasers. Int J Thermophys 39, 139 (2018). https://doi.org/10.1007/s10765-018-2458-0

    Article  ADS  Google Scholar 

  59. A. Fleming, C. Folsom, C. Jensen, H. Ban, Fiber-based modulated optical reflectance configuration allowing for offset pump and probe beams. Rev Sci Instrum 87, 124902 (2016). https://doi.org/10.1063/1.4967469

    Article  ADS  Google Scholar 

  60. A. Fleming, C. Folsom, C. Jensen, and H. Ban, “Thermal property probe,” US20180156674A1, Jun. 07, 2018

  61. A. Mandelis, Diffusion-Waves Fields Mathematical Methods and Green Functions, 1st edn. (Springer, New York, 2001)

    Book  Google Scholar 

  62. C.B. Saltonstall et al., Complexion dictated thermal resistance with interface density in reactive metal multilayers. Phys Rev B 101(24), 245422 (2020). https://doi.org/10.1103/physrevb.101.245422

    Article  ADS  Google Scholar 

  63. Z. Hua, H. Ban, M. Khafizov, R. Schley, R. Kennedy, D.H. Hurley, Spatially localized measurement of thermal conductivity using a hybrid photothermal technique. J Appl Phys 111, 103505 (2012)

    Article  ADS  Google Scholar 

  64. A Salazar, R Fuente, E Apiñaniz, A Mendioroz, R Celorrio. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. II Multilayered solids. J Appl Phys. 2011. https://doi.org/10.1063/1.3614525

  65. J. Ordonez-Miranda, J.J. Alvarado-Gil, Thermal quadrupole method applied to flat and spherical semi-transparent multilayers heated up with a modulated laser beam. J Appl Phys 112, 114902 (2012). https://doi.org/10.1063/1.4767917

    Article  ADS  Google Scholar 

  66. D.M. Camarano, F.A. Mansur, A.M.M. Santos, L.S. Ribeiro, A. Santos, Thermal conductivity of UO2–BeO–Gd2O3 nuclear fuel pellets. Int J Thermophys 40, 110 (2019). https://doi.org/10.1007/s10765-019-2574-5

    Article  ADS  Google Scholar 

  67. J.-C. Krapez, E. Dohou, Thermal quadrupole approaches applied to improve heat transfer computations in multilayered materials with internal heat sources. Int J Therm Sci 81, 38–51 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.02.007

    Article  Google Scholar 

  68. K. Alaili, J. Ordonez-Miranda, Y. Ezzahri, Modulated heat conduction in a two-layer dielectric system with dynamical interface thermal resistance. J Appl Phys 124, 245101 (2018). https://doi.org/10.1063/1.5058747

    Article  ADS  Google Scholar 

  69. D Maillet. Thermal quadrupoles: solving the heat equation through integral transforms. John Wiley & Sons Inc, 2000

  70. C. Xing et al., Parametric study of the frequency-domain thermoreflectance technique. J Appl Phys 112(10), 103105 (2012). https://doi.org/10.1063/1.4761977

    Article  ADS  Google Scholar 

  71. D.P. Almond, P.M. Patel, Photothermal Science and Techniques (Springer, Netherlands, 1996)

    Google Scholar 

  72. T. Tomimura, “Experimental Study of Filler Insertion Effect on Mean Thermal Contact Conductance”, JSME Int. J Ser B Fluids Therm Eng 47(3), 447–452 (2004). https://doi.org/10.1299/jsmeb.47.447

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1935767.

Funding

NSF—1935767.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy Munro.

Ethics declarations

Conflicts of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 81 kb)

Supplementary material 2 (DOCX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, D., Goodson, M., Miles, M. et al. Optimized Design for a Device to Measure Thermal Contact Conductance During Friction Stir Welding. Int J Thermophys 42, 6 (2021). https://doi.org/10.1007/s10765-020-02746-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02746-0

Keywords

Navigation