Skip to main content

Advertisement

Log in

Effect of groove rolling on the microstructure and properties of Cu-Nb microcomposite wires

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Cu-Nb microcomposite wire was successfully prepared by a groove rolling process. The effects of groove rolling on the diffraction peaks, microstructure, and properties of the Cu-Nb microcomposite were investigated and the microstructure evolutions and strengthening mechanism were discussed. The tensile strength of the Cu-Nb microcomposite wire with a diameter of 2.02 mm was greater than 1 GPa, and its conductivity reached 68% of the International Annealed Copper Standard, demonstrating the Cu-Nb microcomposite wire with high tensile strength and high conductivity after groove rolling. The results show that an appropriate groove rolling method can improve the performance of the Cu-Nb microcomposite wire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.Q. Sun, F. Jiang, L. Deng, H.X. Xiao, L. Li, M. Liang, and T. Peng, Uniaxial fatigue behavior of Cu-Nb micro-composite conductor, part I: Effect of peak stress and stress ratio, Int. J. Fatigue, 91(2016), p. 275.

    Article  CAS  Google Scholar 

  2. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces, Acta Mater., 56(2008), No. 13, p. 3109.

    Article  CAS  Google Scholar 

  3. L. Thilly, P.O. Renault, V. Vidal, F. Lecouturier, S. Van Petegem, U. Stuhr, and H. Van Swygenhoven, Plasticity of multiscale nanofifilamentary Cu/Nb composite wires during in situ neutron diffraction: Codeformation and size effect, Appl. Phys. Lett., 88(2006), No. 19, art. No. 191906.

  4. K. Han, V.J. Toplosky, R. Walsh, C. Swenson, B. Lesch, and V.I. Pantsyrnyi, Properties of high strength Cu-Nb conductor for pulsed magnet applications, IEEE Trans. Appl. Supercond., 12(2002), No. 1, p. 1176.

    Article  Google Scholar 

  5. K. Kindo, 100 T magnet developed in Osaka, Physica B, 294–295(2001), p. 585.

    Article  Google Scholar 

  6. L. Thilly, S.V. Petegem, P.-O. Renault, F. Lecouturier, V. Vidal, B. Schmitt, and H. Van Swygenhoven, A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on Cu-Nb nanocomposite wires, Acta Mater., 57(2009), No. 11, p. 3157.

    Article  CAS  Google Scholar 

  7. X.C. Pan, J. Zhang, Y. Huang, and Y.C. Liu, Construction of metallurgical interface with high strength between immiscible Cu and Nb by direct bonding method, J. Alloys Compd., 723(2017), p. 1053.

    Article  CAS  Google Scholar 

  8. P.F. Wang, P.X. Zhang, M. Liang, C.S. Li, and J.S. Li, Heat treatment effect on the microstructure and properties of a high-strength and high-conductivity Cu-Nb-Cu microcomposite, IEEE Trans. Appl. Supercond., 29(2019), No. 4, art. No. 6000205.

  9. K. Shimoyama, S. Yokoyama, S. Kaneko, and F. Fujita, Effect of grooved roll profiles on microstructure evolutions of AZ31 sheets in Periodical Straining Rolling process, Mater. Sci. Eng. A, 611(2014), p. 58.

    Article  CAS  Google Scholar 

  10. L.F. Zeng, R. Gao, Q.F. Fang, X.P. Wang, Z.M. Xie, S. Miao, T. Hao, and T. Zhang, High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding, Acta Mater., 110(2016), p. 341.

    Article  CAS  Google Scholar 

  11. M. Knezevic and A. Bhattacharyya, Characterization of micro-structure in Nb rods processed by rolling: Effect of grooved rolling die geometry on texture uniformity, Int. J. Refract. Met. Hard Mater., 66(2017), p. 44.

    Article  CAS  Google Scholar 

  12. R.D. Nyilas and R. Spolenak, Orientation-dependent ductile-to-brittle transitions in nanostructured materials, Acta Mater., 56(2008), No. 19, p. 5627.

    Article  CAS  Google Scholar 

  13. S.C.V. Lim and A.D. Rollett, Length scale effects on recrystallization and texture evolution in Cu layers of a roll-bonded Cu-Nb composite, Mater. Sci. Eng. A, 520(2009), No. 1–2, p. 189.

    Article  Google Scholar 

  14. B. Zhang, C.L. Yang, Y.X. Sun, X.L. Li, and F. Liu, The micro-structure, mechanical properties and tensile deformation mechanism of rolled AlN/AZ91 composite sheets, Mater. Sci. Eng. A, 763(2019), art. No. 138118.

  15. K. Al-Fadhalah, C.N. Tomé, A.J. Beaudoin, I.M. Robertson, J.P. Hirth, and A. Misra, Modeling texture evolution during rolling of a Cu-Nb multilayered system, Philos. Mag., 85(2005), No. 13, p. 1419.

    Article  CAS  Google Scholar 

  16. Q. Wu, W.X. Xu, and L.C. Zhang, Microstructure-based modelling of fracture of particulate reinforced metal matrix composites, Composites Part B, 163(2019), p. 384.

    Article  CAS  Google Scholar 

  17. K.M. Youssef, M.A. Abaza, R.O. Scattergood, and C.C. Koch, High strength, ductility, and electrical conductivity of in-situ consolidated nanocrystalline Cu-1%Nb, Mater. Sci. Eng. A, 711(2018), p. 350.

    Article  CAS  Google Scholar 

  18. Z. Fan, S. Xue, J. Wang, K.Y. Yu, H. Wang, and X. Zhang, Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers, Acta Mater., 120(2016), p. 327.

    Article  CAS  Google Scholar 

  19. K. Changela, H. Krishnaswamy, and R.K. Digavalli, Development of combined groove pressing and rolling to produce ultra-fine grained Al alloys and comparison with cryorolling, Mater. Sci. Eng. A, 760(2019), p. 7.

    Article  CAS  Google Scholar 

  20. X.Q. Shang, H.M. Zhang, Z.S. Cui, M.W. Fu, and J.B. Shao, A multiscale investigation into the effect of grain size on void evolution and ductile fracture: Experiments and crystal plasticity modeling, Int. J. Plast., 125(2020), p. 133.

    Article  Google Scholar 

  21. D.P. Shen, H.B. Zhou, and W.P. Tong, Influence of deformation temperature on the microstructure and thermal stability of HPT-consolidated Cu-1%Nb alloys, J. Mater. Res. Technol., 8(2019), No. 6, p. 6396.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2016YFA0401701) and the National Natural Science Foundation of China (No. 51601151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-xiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Pf., Liang, M., Xu, Xy. et al. Effect of groove rolling on the microstructure and properties of Cu-Nb microcomposite wires. Int J Miner Metall Mater 28, 279–284 (2021). https://doi.org/10.1007/s12613-020-2073-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2073-5

Keywords

Navigation