Skip to main content

Advertisement

Log in

Diversity and species associations in cryptogam communities along a pedoenvironmental gradient on Elephant Island, Maritime Antarctica

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

The Maritime Antarctica region has terrestrial ecosystems dominated by lichens and mosses, representing important ecological indicators of climate change. However, little is known about environmental factors that shape regional cryptogam communities at local scale. In this study we analyse changes in species richness, species composition and coverage of representative cryptogam communities across a pedoenvironmental gradient in Maritime Antarctica. We hypothesized that soil texture and chemical properties shape variations in species richness and composition. We selected fifteen different pedoenvironments, where 20 plots (20 × 20 cm) were sampled for obtaining phytosociological parameters of cryptogamous communities, and in each plot a composite topsoil sample was collected to determine chemical and physical soil properties. We then evaluated the main effects of soil attributes on the richness and composition of cryptogam species using direct gradient analysis and linear models. The ecological value of species was determined, allowing to identify the type of plant community and species associations in each pedoenvironment. Differences in species composition, richness and coverage were detected along the pedoenvironmental gradient. The model analysis showed that soil fertility has significant effects on species composition, but not on species richness. Based on gradient analysis, variability on soil fertility and nutrient contents were important pedoenvironmental filters for cryptogam communities in Maritime Antarctica. This study reveals that small-scale heterogeneity contributes to specific associations along pedoenvironmental gradients. We conclude that soil attributes drive the composition pattern of cryptogam species and also the type of communities present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali A, Yan ER, Chen HYH, Chang SX, Zhao YT, Yang XD, Xu MS (2016) Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences 13:4627–4635

    CAS  Google Scholar 

  • Alison JS, Lewis-Smith I (1973) The vegetation of Elephant Island, South Shetlands Islands. Br. Antarct. Surv. Bull. 33–34:185–212

    Google Scholar 

  • Amesbury MJ, Roland TP, Royles J, Hodgson DA, Convey P, Griffiths H, Charman DJ (2017) Curr Biol 27:1–7

    Google Scholar 

  • Barczuk A (1985) Ornithogenic phosphates on King George Island, Maritime Antarctic. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer-Verlag, Berlin, pp 163–169

    Google Scholar 

  • Barták M, Váczi P, Stachon Z, Kubesova S (2005) Vegetation mapping of moss-dominated areas of northern part of James Ross Island (Antarctica) and a suggestion of protective measures. Czech Polar Rep 5:75–87

    Google Scholar 

  • Barton K (2015) MuMIn: multi-model inference. Available at http://CRAN.R-project. org/pac.kage=MuMIn

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear Mixed-effects Models using Eigen and S4. R package version 1.1–7. Available at https://cran.r-project.org/web/packages/lme4/index.html

    Google Scholar 

  • Benavent-González A, Delgado-Baquerizo M, Fernández-Brum L, Singh BK, Maestre FT, Sancho LG (2018) Identity of plant, lichen and moss species connects with microbial abundance and soil functioning in maritime Antarctica. Pl & Soil 429:35–52

    Google Scholar 

  • Beyer L, Pingpank K, Wriedt G, Bölter M (2000) Soil formation in coastal continental Antarctica (Wilkes Land). Geoderma 95:283–304

    Google Scholar 

  • Bockheim JG (2015) The soils of Antarctica. World Soils Book Series Dordetch: Springer

    Google Scholar 

  • Bockheim JG, Haus NW (2014) Distribution of organic carbon in the soils of Antarctica. In Hartemink A, McSweeney K (eds) Soil carbon. Progress in Soil Science. Springer, Cham

    Google Scholar 

  • Bokhorst S, Huiskes A, Convey P, Aerts R (2007) The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic. BMC Ecol 7:15

    PubMed  PubMed Central  Google Scholar 

  • Braun-Blanquet J (1932) Plant sociology: the study of plant communities. New York, McGraw-Hill

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35

    Google Scholar 

  • Campbell IB, Claridge GGC (1987) Antarctica: soils, weathering processes and environment. Elsevier, Amsterdam

    Google Scholar 

  • CGE-UAM-UFRJ (2005) Isla Elefante/Elephant Island, Antártida. Mapa E. 1:50 000. Serie Cartografía Antártica. Madrid: Centro Geográfico del Ejército

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Google Scholar 

  • Choi SH, Kim SC, Hong SG, Lee KS (2015) Influence of microenvironment on the spatial distribution of Himantormia lugubris (Parmeliaceae) in ASPA No. 171, maritime Antarctic. J Ecol Environm 38:493–503

    Google Scholar 

  • Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure. Austral J Ecol 18:117–143

    Google Scholar 

  • Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample based rarefaction, extrapolation and comparison of assemblages. J Pl Ecol 5:3–21

    Google Scholar 

  • Crawley MJ (2013) The R Book, second. Wiley, London

    Google Scholar 

  • Dinno A (2017) ‘dunn.test’ package: Dunn's test of multiple comparisons using rank sums. Available at http://CRAN.R-project. org/package= dunn.test (RStudio package version)

  • Embrapa (1997) Manual de métodos de análise de solo. 2. ed. ver. atualiz. Centro Nacional de Pesquisa de Solos, Rio de Janeiro, 212 pp

  • Francelino MR, Schaefer CEGR, Simas FNB, Filho EIF, Souza JJLL, Costa LM (2011) Geomorphology and soils distribution under paraglacial conditions in an ice-free area of Admiralty Bay, King George Island, Antarctica. Catena 85:194–204

    Google Scholar 

  • Götzenberger L, De Bello F, Brathen KA, Davison J, Dubuis A, Guisan A, Leps J, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012) Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol Rev 87:111–127

    PubMed  Google Scholar 

  • Hadley W (2015) R ggplot2 package: an implementation of the grammar of graphics. Available at http://ggplot2.org

  • Hsieh TC, Ma KH, Chao A (2016) ‘iNEXT’: iNterpolation and EXTrapolation for species diversity. Available at https://cran.r-project.org/web/packages/iNEXT/index.html

  • Husson F, Josse J, Le S, Mazet J (2017) ‘FactoMineR’ package Multivariate: Exploratory data analysis and data mining. Available at http://CRAN.R-project.org/package=FactoMineR (RStudio package version 1.0.14)

  • Ji S, Geng Y, Li D, Wang G (2009) Plant coverage is more important than species richness in enhancing aboveground biomass in a premature grassland, northern China. Agric Eco-Syst Environm 129:491–496

    Google Scholar 

  • Lara F, Mazimpaka V (1998) Succession of epiphytic bryophytes in a Quercus pyrenaica forest from Spanish central range (Iberian Peninsula). Nova Hedwigia 67:125–138

    Google Scholar 

  • Leishman M, Wild C (2001) Vegetation abundance and diversity in relation to soil nutrients and soil water content in Vestfold Hills, East Antarctica. Antarc Sci 13:26–134

    Google Scholar 

  • Longton RE (1988) Biology of polar bryophytes and lichens. Cambridge University Press, Cambridge

    Google Scholar 

  • López-Martínez J, Serrano E, Schmid T, Mink S, Linés C (2012) Periglacial processes and landforms in the South Shetland Islands (Northern Antarctic Peninsula region). Geomorphology 155–156:62–79

    Google Scholar 

  • López-Martínez J, Trouw RAJ, Galindo-Zaldívar J, Maestro A, Simoes LSA, Medeiros F F, Trouw CC (2006) Tectonics and geomorphology of Elephant Island, South Shetland Islands. In Fütterer DK, Damaske D et al (eds) Antarctic contributions to global Earth science 5.9. Berlin-Heildelberg, New York: Springer

    Google Scholar 

  • Magurran AE (2004) Measuring Biological Diversity. First ed. Blackwell Science, Oxford

  • Marques J, Hespanhol H, Vieira C, Sêneca A (2005) Comparative study of the bryophyte epiphytic vegetation in Quercus pyrenaica and Quercus robur woodlands from northern Portugal. Bol Soc Esp Briol 26–27:75–84

    Google Scholar 

  • Michel RFM, Schaefer CEGR, Dias L, Simas FNB, Benites V, Mendonça ES (2006) Ornithogenic Gelisols (Cryosols) from Maritime Antarctica: pedogenesis, vegetation and carbon studies. Soil Sci Soc Amer J 70:1370–1376

    CAS  Google Scholar 

  • Michel RFM, Schaefer CEGR, López-Martinez J, Simas FNB, Haus NW, Serrano E, Bockheim JG (2014) Soils and landforms from Fildes Peninsula and Ardley Island, Maritime Antartica. Geomorphology 225:76–86

    Google Scholar 

  • Moura PA, Francelino MR, Schaefer CEGR, Simas FNB, de Mendonça BAF., 2012. Distribution and characterization of soils and landform relationships in Byers Peninsula, Livingston Island, Maritime Antarctica. Geomorphology 155–156:45–54

    Google Scholar 

  • Navas A, Oliva M, Fernández J, Gaspar L, Quijano L, Lizaga I (2017) Radionuclides and soil properties as indicators of glacier retreat in a recently deglaciated permafrost environment of the Maritime Antarctica. Sci Total Environm 609:192–204

    CAS  Google Scholar 

  • Navas A, Serrano E, López-Martínez J, Gaspar L, Lizaga I (2018) Interpreting environmental changes from radionuclides and soil characteristics in different landform contexts of elephant island (maritime Antarctica). Land Degrad Developm 29:3141–3158

    Google Scholar 

  • O’Brien RMG, Romans JCC, Robertson L (1979) Three soil profiles from Elephant Island, South Shetland Islands. Brit Antarc Surv Bull 47:1–12

    Google Scholar 

  • Ochyra R, Lewis-Smith RI, Bednarek-Ochyra H (2008) The illustrated moss flora of Antarctic. Cambridge University Press, Cambridge

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, et al (2018) Vegan: community ecology package. R package version 2.0–7 Available at https://cran.r-project.org/web/packages/vegan/index.html

  • Olech M (2004) Lichens of King George Island Antarctica. The Institute of Botany of The Jagiellonian University, Cracow

    Google Scholar 

  • Øvstedal DO, Lewis-Smith RI (2001) Lichens of Antactica and South Georgia: a guide to their identification and ecology. Cambridge, Cambridge University Press

    Google Scholar 

  • Parnikoza IY, Miryuta NY, Maidanyuk DN, Loparev SA, Korsun SG, Budzanivska IG, Shev-chenko TP, Polischuk VP, Кunakh VA, Kozeret-ska IA (2007) Habitat and leaf cytogenetic characteristics of Deschampsia antarctica Desv. in Maritime Antarctic. Polar Sci 1:2–4, pp 121–127

    Google Scholar 

  • Pereira AB, Putzke J (1994) Floristic Composition of Stinker Point, Elephant Island, Antarctica. Korean J Polar Res 5:37–47

    Google Scholar 

  • Pereira AB, Putzke J (2013) The Brazilian research contribution to knowledge of the plant communities from Antarctic ice free areas. A. Aca. Bras. Ciê. 85:923–935

  • Putzke J, Pereira AB (2001) The Antarctic mosses with special reference to the South Shetlands Islands. Editora da Ulbra, Canoas

    Google Scholar 

  • Putzke J, Vieira FCB, Pereira AB (2020) Vegetation recovery after the removal of a facility in Elephant Island, Maritime Antarctic. Land Degrad Developm 31:96–104

    Google Scholar 

  • Qian H., Hao Z, Zhang J (2014) Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. J Pl Ecol 7:154–165

    Google Scholar 

  • Quintana RD, Travaini A (2000) Characteristics of nest sites of skuas and kelp gull in the Antarctic Peninsula. J Field Ornithol 71:236–249

    Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org

    Google Scholar 

  • Redon J (1985) Liquens Antárticos. Instituto Antártico Chileno (INACH), Santiago de Chile

    Google Scholar 

  • Sanaei A, Ali A, Ali M, Chahouki Z, Jafar M (2018) Plant coverage is a potential ecological indicator for species diversity and aboveground biomass in semi-steppe rangelands. Ecol Indicators 93:256–266

    Google Scholar 

  • Schmitz D, Putzke J, Albuquerque MP, Schünneman AL, Vieira FCB, de Victoria F C, Pereira AB (2018) Description of plants communities from Half Moon Island, Antarctica. Polar Res 37:1523663

    Google Scholar 

  • Schmitz D, Schaefer CERG, Putzke J, Francelino MR, Ferrari FR, Corrêa GR, Villa PM (2020) Pedoenvironmental gradient shapes non-vascular species assemblage and community structure in Maritime Antarctica. Ecol Indicators 108:105726

    Google Scholar 

  • Simas FNB, Schaefer CEGR, Melo VF, Albuquerque-Filho MR, Michel RFM, Pereira VV, Gomes MRM, Da Costa LM (2007) Ornithogenic Cryosols from Maritime Antarctica: phosphatization as a soil forming process. Geoderma 138:191–203

    CAS  Google Scholar 

  • Šťastná, V. (2010) Spatio-temporal changes in surface air temperature in the region of the northern Antarctic Peninsula and South Shetland. Islands during 1950–2003. Polar Sci 4:18–33

    Google Scholar 

  • Tatur A, Myrcha A (1993) Changes in chemical composition of water running off from the penguin rookeries at Admiralty Bay Region (King George Island, South Shetlands, Antarctica). Polish Polar Res 4:113–128

    Google Scholar 

  • Thomazini A, Francelino MR, Pereira AB, Schünemann AL, Mendonça ES, Schaefer, CEGR (2018) The spatial variability structure of soil attributes using a detailed sampling grid in a typical periglacial area of Maritime Antarctica. Environ. Earth Sci 77:637

    Google Scholar 

  • Turner J, Lu H, Whit I, King JC, Phillips T, Hosking JS, Bracegirdle TJ, Marshall GJ, Mulvaney R, Deb P (2016) Absence of 21st century warming on Antarctic Peninsula consistente with natural variability. Nature 535:411–415

    CAS  Google Scholar 

  • Victoria FC, Albuquerque MP, Pereira AB, Simas FNB, Spielmann AA, Schaefer CEGR (2013) Characterization and mapping of plant communities at Hennequin Point, King George Island, Antarctica. Polar Res 32:19261

    Google Scholar 

  • Victoria FC, Pereira AB (2007) Índice de valor ecológico (IES) como ferramenta para estudos fitossociológicos e conservação das espécies de musgos na Baía do Almirantado, Ilha Rei George, Antártica Marítima. Oecol Brasil 11:50–55

    Google Scholar 

  • Victoria FC, Pereira AB, Costa DP (2009) Composition and distribution of moss formations in the ice-free areas adjoining the Arctowski region, Admiralty Bay, King George Island, Antarctica. Iheringia 64:81–91

    Google Scholar 

  • Villa PM, Martins SV, Oliveira Neto SN, Rodrigues AC, Martorano L, Delgado L, Cancio NM, Gastauerg M (2018) Intensification of shifting cultivation reduces forest resilience in the northern Amazon. Forest Ecol Managem 430:312–320

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, for concession the scholarship of the first author, and PDJ (CNPq) scholarship for the second author; and for the CNPq, Brazil for financial support of this project (Conselho Nacional de Desenvolvimento Científico e Tecnológico) (project # 406793/2013-1). This work is a contribution of the INCT-Criosfera TERRANTAR group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Schmitz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2026 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitz, D., Villa, P.M., Putzke, J. et al. Diversity and species associations in cryptogam communities along a pedoenvironmental gradient on Elephant Island, Maritime Antarctica. Folia Geobot 55, 211–224 (2020). https://doi.org/10.1007/s12224-020-09376-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-020-09376-2

Keywords

Navigation