Skip to main content
Log in

Membranes Made from Electrospun Polyacrylonitrile Nonwoven Fibers with Uniform Diameter for Lithium-Ion Battery Separators

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Membranes were prepared from polyacrylonitrile (PAN) fibers with uniform diameter for lithium-ion battery separators using optimized electrospinning parameters. In this work, the coefficient of variation (CV) is proposed as one of the indexes to evaluate the uniform consistency of fiber diameter. The most uniform fibrous membrane was compared with a control group that had different uniformity. The effects of the uniformity of the fiber diameter were studied in terms of the membrane porosity, electrolyte absorption, mechanical tensile strength, and thermal stability. The membranes were assembled into coin cells with lithium cobaltite cathodes and graphite anodes, and the performance of the cells was tested. As the uniformity of the fiber diameter increased, the ionic conductivity improved and the interface resistance decreased. The proposed separator improves the discharge capacity (181 mAh·g−1 at the 0.2C rate), C-rate cycling performance, and Coulombic efficiency (99.64 %), which indicates that the uniform membrane could be a candidate for high-performance lithium-ion battery separators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, J. Power Sources, 226, 272 (2013).

    Article  CAS  Google Scholar 

  2. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011).

    Article  CAS  Google Scholar 

  3. L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang, Energy Environ. Sci., 4, 2682 (2011).

    Article  CAS  Google Scholar 

  4. B. Scrosati, J. Hassoun, and Y. K. Sun, Energy Environ. Sci., 4, 3287 (2011).

    Article  CAS  Google Scholar 

  5. M. Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. Van Mierlo, and P. Van Den Bossche, Renew. Sustain. Energy Rev., 56, 572 (2016).

    Article  CAS  Google Scholar 

  6. M. A. Rahman, X. Wang, and C. Wen, J. Appl. Electrochem., 44, 5 (2014).

    Article  CAS  Google Scholar 

  7. P. G. Balakrishnan, R. Ramesh, and T. Prem Kumar, J. Power Sources, 155, 401 (2006).

    Article  CAS  Google Scholar 

  8. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, Nat. Mater., 11, 19 (2012).

    Article  CAS  Google Scholar 

  9. H. Wu, D. Zhuo, D. Kong, and Y. Cui, Nat. Commun., 5, 5193 (2014).

    Article  CAS  Google Scholar 

  10. S. S. Zhang, J. Power Sources, 164, 351 (2007).

    Article  CAS  Google Scholar 

  11. Q. Liu, M. Xia, J. Chen, Y. Tao, Y. Wang, K. Liu, M. Li, W. Wang, and D. Wang, Electrochim. Acta, 176, 949 (2015).

    Article  CAS  Google Scholar 

  12. Y. Liang, S. Cheng, J. Zhao, C. Zhang, S. Sun, N. Zhou, Y. Qiu, and X. Zhang, J. Power Sources, 240, 204 (2013).

    Article  CAS  Google Scholar 

  13. P. Arora and Z. Zhang, Chem. Rev., 104, 4419 (2004).

    Article  CAS  Google Scholar 

  14. V. A. Agubra, L. Zuniga, D. Flores, H. Campos, J. Villarreal, and M. Alcoutlabi, Electrochim. Acta, 224, 608 (2017).

    Article  CAS  Google Scholar 

  15. Y. Liang, L. Ji, B. Guo, Z. Lin, Y. Yao, Y. Li, M. Alcoutlabi, Y. Qiu, and X. Zhang, J. Power Sources, 196, 436 (2011).

    Article  CAS  Google Scholar 

  16. T. H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, S. Tanase, and T. Sakai, J. Power Sources, 181, 155 (2008).

    Article  CAS  Google Scholar 

  17. C. Yang, Z. Jia, Z. Guan, and L. Wang, J. Power Sources, 189, 716 (2009).

    Article  CAS  Google Scholar 

  18. S. S. Choi, Y. S. Lee, C. W. Joo, S. G. Lee, J. K. Park, and K. S. Han, Electrochim. Acta, 50, 339 (2004).

    Article  CAS  Google Scholar 

  19. D. Bansal, B. Meyer, and M. Salomon, J. Power Sources, 178, 848 (2008).

    Article  CAS  Google Scholar 

  20. H. R. Jung, D. H. Ju, W. J. Lee, X. Zhang, and R. Kotek, Electrochim. Acta, 54, 3630 (2009).

    Article  CAS  Google Scholar 

  21. X. Ma, P. Kolla, R. Yang, Z. Wang, Y. Zhao, A. L. Smirnova, and H. Fong, Electrochim. Acta, 236, 417 (2017).

    Article  CAS  Google Scholar 

  22. T. Wang and S. Kumar, J. Appl. Polym. Sci., 102, 1023 (2006).

    Article  CAS  Google Scholar 

  23. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, Polymer, 42, 261 (2001).

    Article  CAS  Google Scholar 

  24. T. H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, S. Tanase, and T. Sakai, J. Power Sources, 181, 155 (2008).

    Article  CAS  Google Scholar 

  25. A. I. Gopalan, P. Santhosh, K. M. Manesh, J. H. Nho, S. H. Kim, C. G. Hwang, and K. P. Lee, J. Membr. Sci., 325, 683 (2008).

    Article  CAS  Google Scholar 

  26. H. Tsutsumi, A. Matsuo, K. Takase, S. Doi, A. Hisanaga, K. Onimura, and T. Oishi, J. Power Sources, 90, 33 (2000).

    Article  CAS  Google Scholar 

  27. Y. Liang, Z. Lin, Y. Qiu, and X. Zhang, Electrochim. Acta, 56, 6474 (2011).

    Article  CAS  Google Scholar 

  28. W. Ul, M. Kim, J. Choi, K. Yoo, R. Kurniawan, and T. Jo, Mater Chem Phys., 229, 310 (2019).

    Article  CAS  Google Scholar 

  29. G. K. Celep and K. Dincer, Int. Polym. Proc., 32, 508 (2017).

    Article  CAS  Google Scholar 

  30. Y. Liang, S. Cheng, J. Zhao, C. Zhang, S. Sun, N. Zhou, Y. Qiu, and X. Zhang, J. Power Sources, 240, 204 (2013).

    Article  CAS  Google Scholar 

  31. F. Zhang, X. Ma, C. Cao, J. Li, and Y. Zhu, J. Power Sources, 251, 423 (2014).

    Article  CAS  Google Scholar 

  32. M. Yanilmaz, Y. Lu, M. Dirican, K. Fu, and X. Zhang, J. Membr. Sci., 456, 57 (2014).

    Article  CAS  Google Scholar 

  33. W. U. Arifeen, M. Kim, J. Choi, K. Yoo, R. Kurniawan, and T. J. Ko, Mater. Chem. Phys., 229, 310 (2019).

    Article  CAS  Google Scholar 

  34. A. Baji, Y. Mai, S. Wong, M. Abtahi, and P. Chen, Compos. Sci. Technol., 70, 703 (2010).

    Article  CAS  Google Scholar 

  35. X. Huang and J. Hitt, J. Membr. Sci., 425–426, 163 (2013).

    Article  CAS  Google Scholar 

  36. Y. Zhang, Z. Wang, H. Xiang, P. Shi, and H. Wang, J. Membr. Sci., 509, 19 (2016).

    Article  CAS  Google Scholar 

  37. G. Zhou, L. Li, D. W. Wang, X. Y. Shan, S. Pei, F. Li, and H. M. Cheng, Adv. Mater, 27, 641 (2015).

    Article  CAS  Google Scholar 

  38. Z. Wang, H. Xiang, L. Wang, R. Xia, S. Nie, C. Chen, and H. Wang, J Membr. Sci., 553, 10 (2018).

    Article  CAS  Google Scholar 

  39. G. Zhou, F. Li, and H. Cheng, Energy Environ. Sci., 7, 1307 (2014).

    Article  CAS  Google Scholar 

  40. L. Hu, H. Wu, F. La Mantia, Y. Yang, and Y. Cui, ACS Nano, 4, 5843 (2010).

    Article  CAS  Google Scholar 

  41. H. Lee, M. Alcoutlabi, J. V Watson, X. Zhang, C. Llc, and S. L. Drive, J. Appl. Polym. Sci., 129, 1939 (2013).

    Article  CAS  Google Scholar 

  42. M. Alcoutlabi, H. Lee, and J. V. Watson, J. Mater. Sci., 48, 2690 (2013).

    Article  CAS  Google Scholar 

  43. J. Landesfeind, J. Hattendorff, A. Ehrl, W. A. Wall, and H. A. Gasteiger, J. Electrochem. Soc., 163, A1373 (2016).

    Article  CAS  Google Scholar 

  44. H. Wang and H. Gao, Electrochim. Acta, 215, 525 (2016).

    Article  CAS  Google Scholar 

  45. M. Yanilmaz, M. Dirican, and X. Zhang, Electrochim. Acta, 133, 501 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Basic Science Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education (NRF — 2017R1A4A1015581).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Jo Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, T., Arifeen, W.U., Kim, M. et al. Membranes Made from Electrospun Polyacrylonitrile Nonwoven Fibers with Uniform Diameter for Lithium-Ion Battery Separators. Fibers Polym 21, 2204–2214 (2020). https://doi.org/10.1007/s12221-020-1243-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1243-4

Keywords

Navigation