Skip to main content
Log in

Surface-functionalized Electrospun Polycaprolactone Fiber for Culturing Stem Cell from Human Exfoliated Deciduous Teeth Culture

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Smooth and bead-free polycaprolactone (PCL) fiber with average diameter of 2.8 micron and pore size of 25 micron were spun from 17 % w/w PCL dissolved in a chloroform:methyl alcohol mixture (3:1 by volume) at 20 kV, a fiber collection distance of 15 cm, a nozzle diameter of 0.9 mm, and 2 ml/h for 5 hours. Then, the fiber surface was immobilized by gelatin (GE), coated by hyaluronic acid (HA), and done by both processes to obtain GE-PCL, HA-PCL, and HA-GE-PCL, respectively. The treated fiber was completely wet by water, whereas the PCL fiber was not. GE improved thermal stability, while HA increased the tensile strength and elastic moduli of the fiber. Both GE and HA reduced their elongations at break. Stem cells from human deciduous teeth (SHED) were chosen to study their proliferation on the fiber, which was exponentially in the following order: GE-PCL > HA-GE-PCL > HA-PCL gt; PCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Dixon, M. L. Marazita, T. H. Beaty, and J. C. Murray, Nat. Rev Genet., 12, 167 (2011).

    Article  CAS  Google Scholar 

  2. F. Sharif, I. Ur Rehman, N. Muhammad, and S. MacNeil, Mater. Sci. Eng. C, 61, 1018 (2016).

    Article  CAS  Google Scholar 

  3. S. V Spilson, H. Jin, E. Kim, and K. C. Chung, Ann. Plast. Surg., 47, 477 (2001).

    Article  CAS  Google Scholar 

  4. J. A. Kaye and H. Jick, Epidemiology, 16, 688 (2005).

    Article  Google Scholar 

  5. J. C. Murray and G. L. Wehby, Oral Dis., 16, 11 (2010).

    Article  Google Scholar 

  6. A. Sai Sankar, B. Sujatha, Es. Devi, and M. Manoj Kumar, J. Int. Soc. Prev. Community Dent., 2, 31 (2012).

    Article  Google Scholar 

  7. P. Sheahan, I. Miller, J. N. Sheahan, M. J. Earley, and A. W. Blayney, Int. J. Pediatr. Otorhinolaryngol., 67, 785 (2003).

    Article  Google Scholar 

  8. Z. Sheikh, N. Hamdan, Y. Ikeda, M. Grynpas, B. Ganss, and M. Glogauer, Biomater. Res., 21, 9 (2017).

    Article  CAS  Google Scholar 

  9. F. J. O’Brien, Mater. Today, 14, 88 (2011).

    Article  CAS  Google Scholar 

  10. B. P. Chan and K. W. Leong, Eur. Spine J, 17, 467 (2008).

    Article  CAS  Google Scholar 

  11. S. Mohammadi, S. S. Shafiei, M. Asadi-Eydivand, M. Ardeshir, and M. Solati-Hashjin, J. Bioact. Compat. Polym., 32, 325 (2017).

    Article  CAS  Google Scholar 

  12. Y. Li, X. Li, R. Zhao, C. Wang, F. Qiu, B. Sun, H. Ji, J. Qiu, and C. Wang, Mater. Sci. Eng. C, 72, 106 (2017).

    Article  CAS  Google Scholar 

  13. M. Kharaziha, M. H. Fathi, and H. Edris, Compos. Sci. Technol, 87, 182 (2013).

    Article  CAS  Google Scholar 

  14. K. Ghosal, A. Chandra, G. Praveen, S. Snigdha, S. Roy, C. Agatemor, S. Thomas, and I. Provaznik, Sci. Rep., 8, 5058 (2018).

    Article  CAS  Google Scholar 

  15. F. Sharifi, S. M. Atyabi, D. Norouzian, M. Zandi, S. Irani, and H. Bakhshi, Int. J. Biol. Macromol, 115, 243 (2018).

    Article  CAS  Google Scholar 

  16. A. Chanda, J. Adhikari, A. Ghosh, S. R. Chowdhury, S. Thomas, P. Datta, and P. Saha, Int. J. Biol. Macromol., 116, 774 (2018).

    Article  CAS  Google Scholar 

  17. K. Ghosal, C. Agatemor, Z. Spitálsky, S. Thomas, and E. Kny, Chem. Eng. J., 358, 1262 (2019).

    Article  CAS  Google Scholar 

  18. K. Ghosal, S. Thomas, N. Kalarikkal, and A. Gnanamani, J. Polym. Res., 21, 410 (2014).

    Article  CAS  Google Scholar 

  19. S. Yan, Q. Wang, Z. Tariq, R. You, X. Li, M. Li, and Q. Zhang, Int. J. Biol. Macromol., 118, 775 (2018).

    Article  CAS  Google Scholar 

  20. J. Zhang, B. Senger, D. Vautier, C. Picart, P. Schaaf, J. C. Voegel, and P. Lavalle, Biomaterials, 26, 3353 (2005).

    Article  CAS  Google Scholar 

  21. J. Jensen, D. C. E. Kraft, H. Lysdahl, C. B. Foldager, M. Chen, A. A. Kristiansen, J. H. D. Rölfing, and C. E. Bünger, Tissue Eng. Part A, 21, 729 (2015).

    Article  CAS  Google Scholar 

  22. A. Y. Tham, C. Gandhimathi, J. Praveena, J. R. Venugopal, S. Ramakrishna, and S. Dinesh Kumar, Int. J. Mol. Sci., 17, 1222 (2016).

    Article  CAS  Google Scholar 

  23. M. Lebourg, J. R. Rochina, T. Sousa, J. Mano, and J. L. G. Ribelles, J. Biomed. Mater. Res. A, 101A, 518 (2013).

    Article  CAS  Google Scholar 

  24. D. Kolbuk, P. Sajkiewicz, K. Maniura-Weber, and G. Fortunato, Eur. Polym. J., 49, 2052 (2013).

    Article  CAS  Google Scholar 

  25. B. Feng, H. Tu, H. Yuan, H. Peng, and Y. Zhang, Biomacromolecules, 13, 3917 (2012).

    Article  CAS  Google Scholar 

  26. I. Rajzer, E. Menaszek, R. Kwiatkowski, J. A. Planell, and O. Castano, Mater. Sci. Eng. C, 44, 183 (2014).

    Article  CAS  Google Scholar 

  27. S. Gautam, A. K. Dinda, and N. C. Mishra, Mater. Sci. Eng. C, 33, 1228 (2013).

    Article  CAS  Google Scholar 

  28. K. Ghosal, A. Manakhov, L. Zajícková, and S. Thomas, AAPS Pharm. Sci. Tech., 18, 72 (2017).

    Article  CAS  Google Scholar 

  29. M. Borjigin, C. Eskridge, R. Niamat, B. Strouse, P. Bialk, and E. B. Kmiec, Int. J. Nanomed., 8, 855 (2013).

    Google Scholar 

  30. J. Wang, D. Li, T. Li, J. Ding, J. Liu, B. Li, and X. Chen, Materials, 8, 1009 (2015).

    Article  CAS  Google Scholar 

  31. B. Derkus, K. C. Emregul, and E. Emregul, Mater. Sci. Eng. C, 56, 132 (2015).

    Article  CAS  Google Scholar 

  32. Y. M. Shin, K. S. Kim, Y. M. Lim, Y. C. Nho, and H. Shin, Biomacromolecules, 9, 1772 (2008).

    Article  CAS  Google Scholar 

  33. S. Shaneh, F. Shokrolahi, P. Shokrollahi, H. Yeganeh, E. Seyedjafari, A. Ardeshirylajimi, and H. Omidian, J. Bioact. Compat. Polym., 30, 57 (2014).

    Article  CAS  Google Scholar 

  34. R. Kunimatsu, K. Nakajima, T. Awada, Y. Tsuka, T. Abe, K. Ando, T. Hiraki, A. Kimura, and K. Tanimoto, Biochem. Biophys. Res. Commun., 501, 193 (2018).

    Article  CAS  Google Scholar 

  35. M. Miura, S. Gronthos, M. Zhao, B. Lu, L. W. Fisher, P. G. Robey, and S. Shi, Proc. Natl. Acad. Sci. USA, 100, 5807 (2003).

    Article  CAS  Google Scholar 

  36. V. Mano and M. E. S. R. e Silva, Mater. Res., 10, 165 (2007).

    Article  CAS  Google Scholar 

  37. J.-P. Chen and C.-H. Su, Acta Biomater, 7, 234 (2011).

    Article  CAS  Google Scholar 

  38. E. Rosellini, C. Cristallini, N. Barbani, G. Vozzi, and P. Giusti, J. Biomed. Mater. Res. A, 91A, 447 (2009).

    Article  CAS  Google Scholar 

  39. S. Y. Lee, D. H. Jang, Y. O. Kang, O. B. Kim, L. Jeong, H. K. Kang, S. J. Lee, C.-H. Lee, W. H. Park, and B.-M. Min, Appl. Surf. Sci., 258, 6914 (2012).

    Article  CAS  Google Scholar 

  40. K. Fukushima, D. Tabuani, and G. Camino, Mater. Sci. Eng. C, 29, 1433 (2009).

    Article  CAS  Google Scholar 

  41. F. D. Kopinke, M. Remmler, K. Mackenzie, M. Möder, and O. Wachsen, Polym. Degrad. Stab., 53, 329 (1996).

    Article  CAS  Google Scholar 

  42. P. Ding, B. Kang, J. Zhang, J. Yang, N. Song, S. Tang, and L. Shi, J. Colloid Interface Sci, 440, 46 (2015).

    Article  CAS  Google Scholar 

  43. B. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, Biomoterials, 17, 137 (1996).

    Article  CAS  Google Scholar 

  44. T. G. Vladkova, Int. J. Polym. Sci., 2010, 296094 (2010).

    Article  CAS  Google Scholar 

  45. B. Suresh, S. Maruthamuthu, M. Kannan, and A. Chandramohan, Polym. J., 43, 398 (2011).

    Article  CAS  Google Scholar 

  46. S. P. M. Crouch, R. Kozlowski, K. J. Slater, and J. Fletcher, J. Immunol. Methods., 160, 81 (1993).

    Article  CAS  Google Scholar 

  47. A. Przekora, A. Benko, M. Blazewicz, E. D. Yildirim, R. Besunder, D. Pappas, J. Wei, T. Igarashi, N. Okumori, and T. Igarashi, Biomed. Mater., 4, 45002 (2009).

    Article  CAS  Google Scholar 

  48. J. H. Lee, H. W. Jung, I. Kang, and H. B. Lee, Biomaterilas, 15, 705 (1994).

    Article  CAS  Google Scholar 

  49. C. J. Newcomb, S. Sur, J. H. Ortony, O. Lee, J. B. Matson, J. Boekhoven, J. M. Yu, G. C. Schatz, and S. I. Stupp, Nat. Commun., 5, 3321 (2014).

    Article  CAS  Google Scholar 

  50. J. Barthes, H. Özçelik, M. Hindié, A. Ndreu-halili, A. Hasan, and N. E. Vrana, Biomed. Res. Int., 2014, 921905 (2014).

    Article  CAS  Google Scholar 

  51. W. T. Su, P. S. Wu, and T. Y. Huang, Mater. Sci. Eng. C, 46, 427 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Mahidol University. The CLSM pictures were taken by Center of Nanoimaging, Mahidol University. The microplate reader was supported by the Central Instrument Facility, Faculty of Science, Mahidol University. Asst. Prof. Dr. Toemsak Srikirin (School of Materials Science and Innovation, Faculty of Science, Mahidol University) is acknowledged for workplace and other facilities. Mr. Anuson Khanuengthong is also acknowledged for culturing SHED cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thammasit Vongsetskul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jitpibull, J., Vongsetskul, T., Sritanaudomchai, H. et al. Surface-functionalized Electrospun Polycaprolactone Fiber for Culturing Stem Cell from Human Exfoliated Deciduous Teeth Culture. Fibers Polym 21, 2215–2223 (2020). https://doi.org/10.1007/s12221-020-1147-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1147-3

Keywords

Navigation