Skip to main content
Log in

Flexible Polyurethane Foam-ZnO Nanocomposite for Photocatalytic Degradation of Textile Dye

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This work aims at the removal of textile dye namely methylene blue (MB) from an aqueous solution using ZnO nanoparticle loaded flexible polyurethane (PU) foam composite. ZnO nanoparticle loaded PU foams were successfully synthesized by adding ZnO nanoparticles at varying weights (0.1 g, 0.2 g, 0.3 g, 0.4 g and 0.5 g) in the foaming blend. Synthesized foam composites were characterized for bulk density and sol fraction. The cellular morphology of the foams was characterized using Scanning Electron Microscope (SEM). PU foam shows highly porous and open cell structure. Degradation of MB dye from an aqueous model pollutant was carried out using prepared foam composites under UV and solar irradiations. It has been observed that irradiation under solar source degrades MB dye in a short span of time as compared to UV irradiation. The effect of nanoparticle loading, time of irradiation and reuse of foam on MB dye degradation from synthetic waste water was effectively studied. Moreover, experimental data also exhibits first order degradation kinetics and the rate constants were found to be 0.66 h−1 under UV light and 3.07 h−1 in sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Pielichowska, J. Bieda, and P. Szatkowski, Renew. Energy, 91, 456 (2016).

    CAS  Google Scholar 

  2. T. T. Tung, C. Robert, M. Castro, J. F. Feller, T. Y. Kim, and K. S. Suh, Carbon, 108, 450 (2016).

    CAS  Google Scholar 

  3. C. B. Park, S. T. Lee, and N. S. Ramesh in “Polymeric Foams: Science and Technology”, 1st ed., CRC Press, Florida, 2006.

    Google Scholar 

  4. K. Ashida in “Polyurethane and Related Foams: Chemistry and Technology”, 1st ed., CRC Press, Florida, 2006.

    Google Scholar 

  5. H. W. Engels, H. G. Pirkl, R. Albers, R. W. Albach, J. Krause, A. Hoffmann, H. Casselmann, and J. Dormish, Angew. Chemie-Int. Ed., 52, 9422 (2013).

    CAS  Google Scholar 

  6. P. Calcagnile, D. Fragouli, I. S. Bayer, G. C. Anyfantis, L. Martiradonna, P. D. Cozzoli, R. Cingolani, and A. Athanassiou, ACS Nano., 6, 5413 (2012).

    CAS  Google Scholar 

  7. J. Varghese, M. R. Chandan, and S. Shanthakumar, Chem. Eng. Commun., 207, 1337 (2019).

    Google Scholar 

  8. H. T. Chiu, C. Y. Chang, H. W. Pan, T. Y. Chiang, M. T. Kuo, and Y. H. Wang, J. Polym. Res., 19, 9791 (2012).

    Google Scholar 

  9. N. Sarier and E. Onder, Thermochim. Acta, 475, 15 (2008).

    CAS  Google Scholar 

  10. R. K. Gupta, G. J. Dunderdale, M. W. England, and A. Hozumi, J. Mater. Chem. A., 5, 16025 (2017).

    CAS  Google Scholar 

  11. L. Wu, L. Li, B. Li, J. Zhang, and A. Wang, ACS Appl. Mater. Interfaces, 7, 4936 (2015).

    CAS  PubMed  Google Scholar 

  12. A. A. Nikkhah, H. Zilouei, A. Asadinezhad, and A. Keshavarz, Chem. Eng. J., 262, 278 (2015).

    CAS  Google Scholar 

  13. S. A. Adanan, F. Zainuddin, N. H. A. Zaidi, H. M. Akil, and S. Ahmad, AIP Conf. Proc., 1756, 040010 (2016).

    Google Scholar 

  14. I. Javni, K. Song, J. Lin, and Z. S. Petrovic, J Cell Plast., 47, 357 (2011).

    CAS  Google Scholar 

  15. J. O. Akindoyo, M. D. H. Beg, S. Ghazali, M. R. Islam, M. Jeyaratnam, and A. R. Yuvaraj, RSC Adv., 6, 114453 (2016).

    CAS  Google Scholar 

  16. C. Sharma, S. Kumar, A. R. Unni, S. K. Rath, and G. Harikrishnan, J. Appl. Polym. Sci., 131, 8420 (2014).

    Google Scholar 

  17. R. Yan, R. Wang, C. W. Lou, S. Y. Huang, and J. H. Lin, Compos. Part B Eng., 83, 252 (2015).

    Google Scholar 

  18. M. S. S. Dorraji, H. R. Ashjari, M. H. Rasoulifard, and M. R. Houjaghan, Korean J. Chem. Eng., 34, 547 (2017).

    CAS  Google Scholar 

  19. G. Harikrishnan, T. U. Patro, and D. V. Khakhar, Ind. Eng. Chem. Res., 45, 7126 (2006).

    Article  CAS  Google Scholar 

  20. S. Semenzato, A. Lorenzetti, M. Modesti, E. Ugela, D. Hreljaa, S. Bescoa, R. A. Michelina, A. Sassib, G. Facchinb, F. Zorzic, and R. Bertania, Appl. Clay Sci., 44, 35 (2009).

    CAS  Google Scholar 

  21. P. Jain, and T. Pradeep, Biotechnol. Bioeng., 90, 59 (2005).

    CAS  PubMed  Google Scholar 

  22. N. Chamangard and H. Asgharzadeh, CrystEngComm., 18, 9103 (2016).

    CAS  Google Scholar 

  23. A. K. Radzimska and T. Jesionowski, Materials, 7, 2833 (2014).

    Google Scholar 

  24. J. Zou, Y. Lei, M. Liang, and H. Zou, J. Polym. Res., 22, 201 (2015).

    Google Scholar 

  25. X. Chen, Z. Wu, D. Liu, and Z. Gao, Nanoscale Res. Lett. 12, 143 (2017).

    PubMed  Google Scholar 

  26. B. Palanisamy, C. M. Babu, B. Sundravel, S. Anandan, and V. Murugesan, J. Hazard Mater., 252, 233 (2013).

    PubMed  Google Scholar 

Download references

Acknowledgement

Authors would like to thank Vellore Institute of Technology, Vellore for providing the necessary research facilities. Authors also acknowledge Indian Polyurethane Association Technical Centre and Huntsman Polyurethane India Ltd. for providing foam chemicals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aabid Hussain Shaik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandan, M.R., Radhakrishnan, K., Bal, D.K. et al. Flexible Polyurethane Foam-ZnO Nanocomposite for Photocatalytic Degradation of Textile Dye. Fibers Polym 21, 2314–2320 (2020). https://doi.org/10.1007/s12221-020-1346-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1346-y

Keywords

Navigation