Skip to main content
Log in

The “Rzehakia beds” on the northern shelf of the Pannonian Basin: biostratigraphic and palaeoenvironmental implications

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The Miocene genus Rzehakia, an endemic brackish bivalve that lived in the Paratethys Sea, recorded in late Ottnangian sediments deposited during the regression of the Central Paratethys Sea in the semi-enclosed Alpine-Carpathian foreland basin, is closely related to the Rzehakia found hundreds of kilometres away in the early Badenian transgressive sequence situated in the Western Carpathians hinterland. The finding of the “Rzehakia beds” from the Malý Krtíš site in the Novohrad-Nógrád Basin provides insight into the palaeobiogeography of the Central Paratethys. The present study documents Rzehakia-bearing deposits of an alternating wave-dominated, river-influenced environment and of a fluvial-dominated, tide-influenced, wave-affected environment, probably located on the prodelta slope of a compound deltaic clinoform. Corresponding calcareous nannofossil assemblages, marked by the absence of Sphenolithus belemnos and the co-occurrence of Helicosphaera ampliaperta with Sphenolithus heteromorphus without Helicosphaera waltrans, indicate the NN4 Zone. Furthermore, the presence of the regional benthic foraminiferal marker Uvigerina graciliformis indicates a Karpatian age and the planktic Globorotalia transsylvanica restricts the profile stratigraphic range to the upper Burdigalian-Langhian part of the NN4 Zone (i.e., upper Karpatian-lower Badenian). In accordance with updated palaeogeographic data, these results led us to the conclusion that the “Rzehakia beds” in the Novohrad-Nógrád Basin are synchronous with or younger than those from the Alpine-Carpathian Foredeep and are possibly related with their middle Miocene (late Kotzakhurian–early Tarkhanian) occurrences in the Eastern Paratethys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdul Aziz H, Di Stefano A, Foresi LM, Hilgen FJ, Iaccarino SM, Kuiper KF, Lirer F, Salvatorini G, Turco E (2008) Integrated stratigraphy and 40Ar/39Ar chronology of early Middle Miocene sediments from DSDP Leg 42A, site 372 (Western Mediterranean). Palaeogeogr Palaeoclimatol Palaeoecol 257:123–138

    Google Scholar 

  • Andrejeva Grigorovič AS, Kováč M, Halásová E, Hudáčková N (2001) Litho and biostratigraphy of the Lower and Middle Miocene sediments of the Vienna basin (NE part) on the basis of calcareous nannoplankton and foraminifers. Scripta Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis Geol 30:23–27

    Google Scholar 

  • Boesiger TM, de Kaenel E, Bergen JA, Browning E, Blair SA (2017) Oligocene to Pleistocene taxonomy and stratigraphy of the genus Helicosphaera and other placolith taxa in the circum North Atlantic Basin. J Nannoplankton Res 37(2–3):145–175

    Google Scholar 

  • Bohn-Havas M (1968) Oncophorák (Rzehakiák) a Kazár-Gyulakeszi (Nógrád M) Alapszelvényben. Magyár Állami Földtani Intézet Évi Jelentése AZ 1968. Évroȍl, 131–144. (In Hungarian)

  • Buatois L, Mángano G (2011) Ichnology. Organism-substrate interactions in space and time. Cambridge University Press, Cambridge

    Google Scholar 

  • Čechovič V (1948) Nálezy oncophorovych vrstiev v panónskej panve. Práce Štátneho geologickéhi Ústavu 17:73–86

    Google Scholar 

  • Cicha I, Rögl F, Rupp Ch, Čtyroká J (1998) Oligocene - Miocene foraminifera of the Central Paratethys. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 549

  • Čtyroký P (1968) The correlation of Rzehakia (Oncophora) Series (Miocene) in Eurasia. Palaeogeogr Palaeoclimatol Palaeooecol 4:257–270

    Google Scholar 

  • Čtyroký P (1972) Die Molluskenfauna der Rzehakia- (Oncophora)-Schichten Mährens. Annalen des Naturhistorischen Museums in Wien 76:41–141

    Google Scholar 

  • Cummings DI, Dumas S, Dalrymple RW (2009) Fine-grained versus coarse-grained wave ripples generated experimentally under large-scale oscillatory flow. J Sediment Res 79(2):83–93

    Google Scholar 

  • Diesing CM (1851) Systema helminthum 2. Wilhelmum Braumüller, Vindobonae

    Google Scholar 

  • Droser ML, Bottjer DJ (1989) Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization. Geology 17:850–852

    Google Scholar 

  • Dumas S, Arnott RWC (2006) Origin of hummocky and swaley cross-stratification—the controlling influence of unidirectional current strength and aggradation rate. Geology 34(12):1073–1076

    Google Scholar 

  • Folk RL (1968) The petrology of sedimentary rocks. Hemphill Publishing Company, Austin

    Google Scholar 

  • Fornaciari E, Di Stefano A, Rio D, Negri A (1996) Middle Miocene quantitative calcareous nannofossil biostratigraphy in the Mediterranean region. Micropaleontology 42(1):37–63

    Google Scholar 

  • Gani MR, Bhattacharya J, MacEachern JA (2008) Using ichnology to determine relative influence of waves, storms, tides, and rivers in deltaic deposits: examples from Cretaceous Western Interior Seaway, USA. In: MacEachern JA, Bann KL, Gingras MK, Pemberton SG (eds) Applied Ichnology SEPM short course notes, vol 52. SEPM Society for Sedimentary Geology, Tulsa, Oklahoma, pp 209–225

    Google Scholar 

  • Gebhardt H, Ćorić S, Krenmayr H-G, Steininger H, Schweigl J (2013) Neudefinition von lithostratigraphischen Einheiten des oberen Ottnangium (Untermiozän) in der alpin-karpatischen Vortiefe Niederösterreichs: Pixendorf-Gruppe, Traisen-Formation und Dietersdorf-Formation. Jahrbuch der Geologischen Bundesanstalt 153(1–4):15–32

    Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz MD, Ogg G (2012) The geologic time Scale 2012. Elsevier, Amsterdam

    Google Scholar 

  • Gregory MR (1991) New trace fossils from the Miocene of Northland, New Zealand: Rorschachichnus amoeba and Piscichnus waitemata. Ichnos 1:195–205

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):1–9

    Google Scholar 

  • Hámor G (1985) Geology of the Nógrád-Cserhát area. Geologica Hungarica, Series Geologica 22:217–307

    Google Scholar 

  • Hardenbol J, Thierry J, Farley MB, Jacquin T, de Graciansky PC, Vail P, Graciansky PC (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of European Basins. In: de Graciansky P-C, Hardenbol J, Jacquin Th, Vail PR (eds) Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM special publications, vol 60. SEPM Society for Sedimentary Geology, Tulsa, Oklahoma, pp 3–13

    Google Scholar 

  • Harzhauser M, Piller EW (2007) Benchmark data of changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeooecol 253:8–31

    Google Scholar 

  • Helland-Hansen W, Hampson GJ (2009) Trajectory analysis: concepts and applications. Basin Res 21:454–483

    Google Scholar 

  • Hilgen FJ, Lourens LJ, Van Dam JA (2012) The Neogene Period. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) A geologic time scale 2012. Elsevier, Amsterdam, pp 923–978

    Google Scholar 

  • Hofmayer F, Kirscher U, Sant K, Krijgsman W, Fritzer Th, Jung D, Weissbrodt W, Reichenbacher B (2019) Three dimensional geological modeling supports a revised Burdigalian chronostratigraphy in the North Alpine Foreland Basin. Int J Earth Sci 108:2627–2651

    Google Scholar 

  • Hohenegger J, Rögl F, Ćorić S, Pervesler P, Lirer F, Roetzel R, Scholger R, Stingl K (2009) The Styrian Basin: a key to the middle Miocene (Badenian/Langhian) Central Paratethys transgressions. Austrian J Earth Sci 102:102–132

    Google Scholar 

  • Hók J, Pelech O, Teťák F, Németh Z, Nagy A (2019) Outline of the geology of Slovakia (W. Carpathians). Mineralia Slovaca 51:31–60

    Google Scholar 

  • Holcová K (1996) Monspeliensina and Spiroloxostoma, paleogeographically significant foraminiferal genera from the “Rzehakia (Oncophora) Beds” (upper Ottnangian, Miocene) in the South Slovak basin (Central Paratethys). Acta Musei Nationalis Pragae, Series B, Historia Naturalis 52:101–110

    Google Scholar 

  • Holcová K (1999) Postmortem transport and resedimentation of foraminiferal tests: relations to cyclical changes of foraminiferal assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 145:157–182

    Google Scholar 

  • Holcová K (2001) Foraminifera and calcareous nannoplankton from the “Rzehakia (Oncophora) Beds” in the Central Paratethys. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 220(2):189–223

    Google Scholar 

  • Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Koroknai B, Pap N, Tóth T, Wórum G (2015) Evolution of the Pannonian basin and its geothermal resources. Geothermics 53:328–352

    Google Scholar 

  • Horváth M, Nagymarosy A (1978) On the age of the Rzehakia–beds and Garáb Schlier based on foraminifera and nannoplankton investigations. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae Sectio Geologica 20:3–21

    Google Scholar 

  • Hudáčková N, Holcová K, Halásová E, Kováčová M, Doláková N, Trubač J, Starek D, Rybár S, Ruman A, Šujan M, Jamrich M, Kováč M (2020) The Pannonian Basin System northern margin paleogeography, climate and depositional environments in the time range during MMCT (Central Paratethys, Novohrad-Nógrád Basin, Slovakia). Paleontolgica electronica

  • Iaccarino SM, Di Stefano A, Foresi LM, Turco E, Baldassini N, Cascella A, Da Prato S, Ferraro L, Gennari R, Hilgen FJ, Lirer F, Maniscalco R, Mazzei R, Riforgiato F, Russo B, Sagnotti L, Salvatorini G, Speranza F, Verducci M (2011) High-resolution integrated stratigraphy of the upper Burdigalian-lower Langhian in the Mediterranean: the Langhian historical stratotype and new candidate sections for defining its GSSP. Stratigraphy 8(2–3):199–215

    Google Scholar 

  • Ivančič K, Trajanova M, Ćorić S, Rožič B, Šmuc A (2018) Miocene paleogeography and biostratigraphy of the Slovenj Gradec Basin: a marine corridor between the Mediterranean and Central Paratethys. Geol Carpath 69:528–544

    Google Scholar 

  • Kantorová V, Ondrejičková A, Vass D (1968) A new view of the origin and age of the Rzehakia (Oncophora) beds in southern Slovakia. Giorn Geol 35(2):407–418

    Google Scholar 

  • Konečný V, Pristaš J, Vass D (1978) Geologická mapa Ipeľskej kotliny a južnej časti Krupinskej planiny. GÚDŠ, Bratislava

    Google Scholar 

  • Korobkov IA (1954) Handbook on and systematic guide to the Tertiary Mollusca. Lamellibranchia. (Spravocnik i metodicheskoe Rukovodstvo po tretychnym mollyuskam. Plastinchatozhabernye). Leningrad. (In Russian)

  • Kováč M, Hudáčková N, Halásová E, Kováčová M, Holcová K, Oszczypko-Clowes M, Báldi K, Gy L, Nagymarosy A, Ruman A, Klučiar T, Jamrich M (2017) The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geologica Slovaca 9(2):75–114

    Google Scholar 

  • Kováč M, Márton E, Oszczypko N, Vojtko R, Hók J, Králiková S, Plašienka D, Klučiar T, Hudáčková N, Oszczypko-Clowes M (2017) Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global Planet Change 155:133–154

    Google Scholar 

  • Kováč M, Halásová E, Hudáčková N, Holcová K, Hyžný M, Jamrich M, Ruman A (2018) Towards better correlation of the Central Paratethys regional time scale with the standard geological time scale of the Miocene Epoch. Geol Carpath 69(3):283–300

    Google Scholar 

  • Kováč M, Rybár S, Halásová E, Hudáčková N, Šarinová K, Šujan M, Baranyi V, Kováčová M, Ruman A, Klučiar T, Zlinská A (2018) Changes in Cenozoic depositional environment and sediment provenance in the Danube Basin. Basin Res 30:97–131

    Google Scholar 

  • Krantz PM (1974) The anastrophic burial of bivalves and its paleoecological significance. J Geol 82:237–265

    Google Scholar 

  • Krézsek C, Bally AW (2006) The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: Insights in gravitational salt tectonics. Mar Pet Geol 23:405–442

    Google Scholar 

  • Kvaliaschvili GA (1962) Onkoforovyi (Rzegakijevyj) gorizont Evrazii. Akad. Nauk. Gruzin. SSR. Institut paleobiol, Tbilisi, pp 1–222

    Google Scholar 

  • Lehotayová R (1982) Miocene nannoplankton zones in West Carpathians. Západné Karpaty, Séria paleontológia 8:91–110

    Google Scholar 

  • Li Z, Bhattacharya J, Schieber J (2015) Evaluating along-strike variation using thin-bedded facies analysis, upper cretaceous ferron notom delta. Utah Sedimentol 62(7):2060–2089

    Google Scholar 

  • Lirer F, Foresi L, Iaccarino S, Salvatorini G, Turco E, Cosentino C, Sierro F, Caruso A (2019) Mediterranean Neogene planktonic foraminifer biozonation and biochronology. Earth Sci Rev 196:1–36

    Google Scholar 

  • Mandic O, Ćorić S (2007) Eine neue Molluskenfauna aus dem oberen Ottnangium von Rassing (NÖ)—taxonomische, biostratigraphische, paläoökologische und paläobiogeographische Auswertung. Jahrbuch der Geologischen Bundesanstalt 147(1–2):387–397

    Google Scholar 

  • Mandic O, De Leeuw A, Bulić J, Kuiper K, Krijgsman W, Jurišić-Polšak Z (2012) Paleogeographic evolution of the Southern Pannonian Basin: 40Ar/39Ar age constraints on the Miocene continental series of northern Croatia. Int J Earth Sci 101(4):1033–1046

    Google Scholar 

  • Martini E (1971) Standard tertiary and quaternary calcareous nannoplankton zonation. In: Farinacci A (eds) Proceedings of the II Planktonic Conference Roma, 1970. Edizioni Tecnoscienza, pp 739–785

  • Márton E, Vass D, Túnyi I, Márton P, Zelenka T (2007) Paleomagnetic properties of the ignimbrites from the famous fossil footprints site, Ipolytarnóc (close to the Hungarian-Slovak frontier) and their age assignment. Geol Carpath 58(6):531–540

    Google Scholar 

  • Mărunteanu M (1999) Litho-and biostratigraphy (calcareous nannoplankton) of the Miocene deposits from the Outer Moldavides. Geol Carpath 50:313–324

    Google Scholar 

  • Mueller G, Gastner M (1971) The “Karbonat-Bombe”, a simple device for the determination of the carbonate content in sediments, soils, and other materials. Neues Jahrbuch für Mineralogie, Monatshefte 10:466–469

    Google Scholar 

  • Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge

    Google Scholar 

  • Nevesskaja LA, Paramonova NP, Babak EV (1997) Opredelitel’ pliocenovih dvustvorčatih molluskov Ugo-zapadnoj Evrazii. Trudi Paleontologičeskogo instituta 269:1–220 (In Russian)

    Google Scholar 

  • Okada H, McIntyre A (1979) Seasonal Distribution of Modern Coccolithophores in the Western North Atlantic Ocean. Mar Biol 54:319–328

    Google Scholar 

  • Pálfy J, Mundil R, Renne PR, Bernor RL, Kordos L, Gasparik M (2007) U-Pb and 40Ar/39Ar dating of the Miocene fossil track site at Ipolytarnóc (Hungary) and its implications. Earth Planet Sci Lett 258(1–2):160–174

    Google Scholar 

  • Palzer-Khomenko M, Wagreich M, Knierzinger W, Meszar M, Gier S, Kallanxhi M-E, Soliman A (2018) A calcite crisis unravelling early Miocene (Ottnangian) stratigraphy in the North Alpine-Carpathian Foreland Basin: a litho- and chemostratigraphic marker for the Rzehakia Lake system. Geol Carpath 69:315–334

    Google Scholar 

  • Papp A, Rögl F, Seneš J (1973) M2 Ottnangien. Die Innviertler, Salgotarjaner, Bantapusztaer Schichtengruppe und die Rzehakia Formation. Chronostratigraphie und Neostratotypen Miozän der Zentralen Paratethys 3, VEDA SAV, Bratislava

  • Patruno S, Hampson GJ, Jackson CA-L (2015) Quantitative characterisation of deltaic and subaqueous clinoforms. Earth Sci Rev 142:79–119

    Google Scholar 

  • Peng Y, Steel RJ, Rossi VM, Olariu C (2018) Mixed-energy process interactions read from a compound-clinoform delta (paleo–orinoco delta, Trinidad): preservation of river and tide signals by mud-induced wave damping. J Sediment Res 88(1):75–90

    Google Scholar 

  • Perch-Nielsen K (1985) Cenozoic calcareous nannofossils. In: Bolli HM, Sanders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 427–554

    Google Scholar 

  • Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4(2–3):151–168

    Google Scholar 

  • Pippèrr M, Reichenbacher B (2017) Late Early Miocene palaeoenvironmental changes in the North Alpine Foreland Basin. Palaeogeogr Palaeoclimatol Palaeoecol 468:485–502

    Google Scholar 

  • Pippèrr M, Reichenbacher B, Kirscher U, Sant K, Hanebeck H (2018) The middle Burdigalian in the North Alpine Foreland Basin (Bavaria, SE Germany)—a lithostratigraphic, biostratigraphic and magnetostratigraphic re-evaluation. Newsl Stratigr 51:285–309

    Google Scholar 

  • Popov SV, Antipov MP, Zastrozhnov AS, Kurina EE, Pinchuk TN (2010) Sea-level fluctuations on the Northern Shelf of the Eastern Paratethys in the Oligocene-Neogene. Stratigrafiya Geologicheskaya Korrelyatsiya 18(2):99–124

    Google Scholar 

  • Popov SV, Rostovtseva YV, Pinchuk TN, Paina IS (2019) Oligocene to Neogene paleogeography and depositional environments of the Euxinian part of Paratethys in Crimean—Caucasian junction. Mar Pet Geol 103:163–175

    Google Scholar 

  • Püspöki Z, Hámor-Vidó M, Pummer T, Sári K, Lendvay P, Selmeczi I, Detzky G, Gúthy T, Kiss J, Zs K, Prakfalvi P, McIntosh RW, Buday-Bódi E, Báldi K, Markos G (2017) A sequence stratigraphic investigation of a Miocene formation supported by coal seam quality parameters—Central Paratethys, N-Hungary. Int J Coal Geol 179:196–210

    Google Scholar 

  • Raková J (1993) Lower Miocene calcareous nannoplankton from drillhole LKŠ-1 (southwestern Lučenec Basin). GÚDŠ, Geologické práce, Správy 97:89–97 (In Slovak with English summary)

    Google Scholar 

  • Roetzel R, de Leeuw A, Mandic O, Márton E, Nehyba S, Kuiper KF, Scholger R, Wimmer-Frey I (2014) Lower Miocene (Upper Burdigalian, Karpatian) volcanic ash-fall at the southeastern margin of the Bohemian Massif in Austria—new evidence from 40Ar/39Ar-dating, palaeomagnetic, geochemical and mineralogical investigations. Austrian Journal of Earth Sciences 107(2):2–22

    Google Scholar 

  • Rögl F (1998) Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Annalen des Naturhistorischen Museums in Wien 99A:279–310

    Google Scholar 

  • Rögl F, Spezzaferri S, Ćorić S (2002) Micropaleontology and biostratigraphy of the Karpatian-Badenian transition (early-middle Miocene boundary) in Austria (Central Paratethys). Courier Forschungsinstitut Senckenberg 237:47–67

    Google Scholar 

  • Rossi VM, Perillo MM, Steel RJ, Olariu C (2017) Quantifying mixed-process variability in shallow-marine depositional systems: what are sedimentary structures really telling us? J Sediment Res 87(10):1060–1074

    Google Scholar 

  • Rupp C, Hofmann T, Jochum B, Pfleiderer S, Schedl A, Schindlbauer G, Schubert G, Slapansky P, Tilch N, Van Husen D, Wagner LR, Wimmer-Frey I (2008) Erläuterungen zu Blatt 47 Ried im Innkreis. Verlag der Geologischen Bundesanstalt (GBA), Wien, pp 1–100

    Google Scholar 

  • Sant K, Kirscher U, Reichenbacher B, Pippèrr M, Jung D, Doppler G, Krijgsman W (2017) Late Burdigalian sea retreat from the North Alpine Foreland Basin: new magnetostratigraphic age constraints. Global Planetary Change 152:38–50

    Google Scholar 

  • Sant K, Palcu D, Mandic O, Krijgsman W (2017) Changing seas in the Early-Middle Miocene of Central Europe: a Mediterranean approach to Paratethyan stratigraphy. Terra Nova 29(5):273–281

    Google Scholar 

  • Sgarrella F, Moncharmont Zei M (1993) Benthic Foraminifera of the Gulf of Naples (Italy): systematics and autoecology. Bollettino della Società Paleontologica Italiana 32(2):145–264

    Google Scholar 

  • Sóron AS (2011) Paleoenvironmental and stratigraphic investigations of the foraminiferal fauna from the Karpatian (Lower Miocene) Garáb Schlier Formation of the Mátraverebély-122 (Mv-122) borehole (North Hungary). Cent Eur Geol 54:211–231

    Google Scholar 

  • Spezzaferri S, Ćorić S (2001) Ecology of Karpatian (early Miocene) foraminifers and calcareous nannoplankton from Laa an der Thaya, lower Austria: a statistical approach. Geol Carpath 52(6):361–374

    Google Scholar 

  • Spezzaferri S, Tamburini F (2007) Paleodepth variations on the Eratosthenes Seamount (eastern Mediterranean): sea-level changes or subsidence? eEarth Discussions 2:115–132

    Google Scholar 

  • Stanley SM (1970) Relation of shell form to life habits of the Bivalvia. The Geological Society of America Inc. Memoir 125:1–296

    Google Scholar 

  • Steininger F, Čtyroký P, Hölzl O, Kókay J, Schlickum WR, Schultz O, Strauch F (1973) Die Molluskenfaunen des Ottnangien. In: Papp A, Rögl F, Seneš J (eds) M2 Ottnangien. Die Innviertler Salgotarjaner, Bantapusztaer Schichtengruppe und die Rzehakia Formation. Chronostratigraphie und Neostratotypen. Miozän der Zentralen Paratethys 3. VEDA SAV, Bratislava, pp 380–554 (pls 1–30)

    Google Scholar 

  • Taylor AM, Goldring R (1993) Description and analysis of bioturbation and ichnofabric. J Geol Soc London 150(1):141–148

    Google Scholar 

  • Turco E, Hüsing S, Hilgen F, Cascella A, Gennari R, Iaccarino SM, Sagnotti L (2017) Astronomical tuning of the La Vedova section between 16.3 and 15.0 Ma. Implications for the origin of megabeds and the Langhian GSSP. Newsl Stratigr 50(1):1–29

    Google Scholar 

  • Vakarelov BK, Ainsworth RB (2013) A hierarchical approach to architectural classification in marginal-marine systems: bridging the gap between sedimentology and sequence stratigraphy. AAPG Bulletin 97:1121–1161

    Google Scholar 

  • Vass D (2002) Litostratigrafia Zapádných Karpát: Neogén a budínsky paleogén. Vydavateľstvo ŠGUDŠ, Bratislava

    Google Scholar 

  • Vass D, Elečko M, Kantorová V, Lehotayová R, Klubert J (1987) Prvý nález morského otnangu v juhoslovenskej panve. Mineralia slovaca 19(5):417–422 (In Slovak with English summary)

    Google Scholar 

  • Walanus A., Nalepka D. (2006) POLPAL 2004, ver. 2006, https://bobas.ibpan. krakow.pl/instytut/polpal2004/polpal.htm.

  • Young JR (1998) Neogene. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. British Micropalaeontological Society, Publications Series, Chapman & Hall, London, pp 225–265

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Slovak Research and Development Agency under the contracts APVV SK-AT-2017-0010, APVV-16-0121 and APVV-15-0575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Ruman.

Ethics declarations

Conflict of interests

There is no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 3356 kb)

Supplementary file2 (XLSX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruman, A., Ćorić, S., Halásová, E. et al. The “Rzehakia beds” on the northern shelf of the Pannonian Basin: biostratigraphic and palaeoenvironmental implications. Facies 67, 1 (2021). https://doi.org/10.1007/s10347-020-00609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-020-00609-6

Keywords

Navigation