Skip to main content
Log in

Effect of pH on the activity of ice-binding protein from Marinomonas primoryensis

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The ability of an ice-binding protein (IBP) from Marinomonas primoryensis (MpIBP) to influence ice crystal growth and structure in nonphysiological pH environments was investigated in this work. The ability for MpIBP to retain ice interactivity under stressed environmental conditions was determined via (1) a modified splat assay to determine ice recrystallization inhibition (IRI) of polycrystalline ice and (2) nanoliter osmometry to evaluate the ability of MpIBP to dynamically shape the morphology of a single ice crystal. Circular dichroism (CD) was used to relate the IRI and DIS activity of MpIBP to secondary structure. The results illustrate that MpIBP secondary structure was stable between pH 6 and pH 10. It was found that MpIBP did not interact with ice at pH ≤ 4 or pH ≥ 13. At 6 ≤ pH ≥ 12 MpIBP exhibited a reduction in grain size of ice crystals as compared to control solutions and demonstrated dynamic ice shaping at 6 ≤ pH ≥ 10. The results substantiate that MpIBP retains some secondary structure and function in non-neutral pH environments; thereby, enabling its potential utility in nonphysiological materials science and engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alegre-Cebollada J, Badilla CL, Fernández JM (2010) Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes. J Biol Chem 285(15):11235–11242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amornwittawat N, Wang S, Banatlao J, Chung M, Velasco E, Duman JG, Wen X (2009) Effects of polyhydroxy compounds on beetle antifreeze protein activity. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics1794(2):341–346.

  • Amornwittawat N, Wang S, Duman JG, Wen X (2008) Polycarboxylates enhance beetle antifreeze protein activity. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1784(12):1942–1948.

  • Bar-Dolev M, Celik Y, Wettlaufer JS, Davies PL, Braslavsky I (2012) New insights into ice growth and melting modifications by antifreeze proteins. J R Soc Interface 9(77):3249–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Dolev M, Bernheim R, Guo S, Davies PL, Braslavsky I (2016) Putting life on ice: bacteria that bind to frozen water. J R Soc Interface 13(121):20160210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barth HG, Boyes BE, Jackson C (1998) Size exclusion chromatography and related separation techniques. Anal Chem 70(12):251–278

    Article  Google Scholar 

  • Biggs CI, Bailey TL, Graham B, Stubbs C, Fayter A, Gibson MI (2017) Polymer mimics of biomacromolecular antifreezes. Nat Commun 8(1):1–12

    Article  CAS  Google Scholar 

  • Buck RP, Singhadeja S, Rogers LB (1954) Ultraviolet absorption spectra of some inorganic ions in aqueous solutions. Anal Chem 26(7):1240–1242

    Article  CAS  Google Scholar 

  • Caple G, Kerr WL, Burcham TS, Osuga DT, Yeh Y, Feeney RE (1986) Superadditive effects in mixtures of fish antifreeze glycoproteins and polyalcohols or surfactants. J Colloid Interface Sci 111(2):299–304

    Article  CAS  Google Scholar 

  • Chao H, DeLuca CI, Davies PL, Sykes BD, Sönnichsen FD (1994) Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice. Protein Sci 3(10):1760–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Congdon T, Dean BT, Kasperczak-Wright J, Biggs CI, Notman R, Gibson MI (2015) Probing the biomimetic ice nucleation inhibition activity of poly (vinyl alcohol) and comparison to synthetic and biological polymers. Biomacromol 16(9):2820–2826

    Article  CAS  Google Scholar 

  • Congdon T, Notman R, Gibson MI (2013) Antifreeze (glyco) protein mimetic behavior of poly (vinyl alcohol): detailed structure ice recrystallization inhibition activity study. Biomacromol 14(5):1578–1586

    Article  CAS  Google Scholar 

  • Davies PL (2014) Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem Sci 39(11):548–555

    Article  CAS  PubMed  Google Scholar 

  • Davies PL, Hew CL, Fletcher GL (1988) Fish antifreeze proteins: physiology and evolutionary biology. Can J Zool 66(12):2611–2617

    Article  CAS  Google Scholar 

  • Delesky EA, Frazier SD, Wallat JD, Bannister KL, Heveran CM, Srubar WV (2019) Ice-binding protein from shewanella frigidimarinas inhibits ice crystal growth in highly alkaline solutions. Polymers 11(2):299

    Article  PubMed Central  CAS  Google Scholar 

  • DeVries AL (1988) The role of antifreeze glycopeptides and peptides in the freezing avoidance of Antarctic fishes. Comparative Biochem Physiol Part B 90(3):611–621

    Article  Google Scholar 

  • Dill KA (1990) Dominant forces in protein folding. Biochemistry 29(31):7133–7155

    Article  CAS  PubMed  Google Scholar 

  • Dolev MB, Braslavsky I, Davies PL (2016) Ice-binding proteins and their function. Ann Rev Biochem 85

  • Duignan TT, Parsons DF, Ninham BW (2014) Collins’s rule, Hofmeister effects and ionic dispersion interactions. Chem Phys Lett 608:55–59

    Article  CAS  Google Scholar 

  • Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30(3):322–328

    Article  Google Scholar 

  • Evans RP, Hobbs RS, Goddard SV, Fletcher GL (2007) The importance of dissolved salts to the in vivo efficacy of antifreeze proteins. Comp Biochem Physiol A 148(3):556–561

    Article  CAS  Google Scholar 

  • Feeney EP, Guinee TP, Fox PF (2002) Effect of pH and calcium concentration on proteolysis in Mozzarella cheese. J Dairy Sci 85(7):1646–1654

    Article  CAS  PubMed  Google Scholar 

  • Fiala GJ, Schamel WW, Blumenthal B (2011) Blue native polyacrylamide gel electrophoresis (BN-PAGE) for analysis of multiprotein complexes from cellular lysates. JoVE (Journal of Visualized Experiments) 48:e2164

    Google Scholar 

  • Fletcher GL, King MJ, Kao MH (1987) Low temperature regulation of antifreeze glycopeptide levels in Atlantic cod (Gadus morhua). Can J Zool 65(2):227–233

    Article  CAS  Google Scholar 

  • Frazier SD, Matar MG, Osio-Norgaard J, Aday AN, Delesky EA, Srubar III, WV (2020) Inhibiting freeze-thaw damage in cement paste and concrete by mimicking nature’s antifreeze. Cell Rep Phys Sci 100060.

  • Garnham CP, Campbell RL, Davies PL (2011) Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci 108(18):7363–7367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL (2008) A Ca2+-dependent bacterial antifreeze protein domain has a novel β-helical ice-binding fold. Biochem J 411(1):171–180

    Article  CAS  PubMed  Google Scholar 

  • Gauthier SY, Kay CM, Sykes BD, Walker VK, Davies PL (1998) Disulfide bond mapping and structural characterization of spruce budworm antifreeze protein. Eur J Biochem 258(2):445–453

    Article  CAS  PubMed  Google Scholar 

  • Ghods P, Isgor OB, McRae G, Miller T (2009) The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement. Cement Concr Compos 31(1):2–11

    Article  CAS  Google Scholar 

  • Gilbert JA, Hill PJ, Dodd CE, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150(1):171–180

    Article  CAS  PubMed  Google Scholar 

  • Graether SP, Kuiper MJ, Gagné SM, Walker VK, Jia Z, Sykes BD, Davies PL (2000) β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406(6793):325–328

    Article  CAS  PubMed  Google Scholar 

  • Graham LA, Davies PL (2005) Glycine-rich antifreeze proteins from snow fleas. Science 310(5747):461–461

    Article  PubMed  Google Scholar 

  • Griffith M, Ala P, Yang DS, Hon WC, Moffatt BA (1992) Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 100(2):593–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Garnham CP, Whitney JC, Graham LA, Davies PL (2012) Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity. PloS one7(11).

  • Hagan RM, Björnsson R, McMahon SA, Schomburg B, Braithwaite V, Bühl M, Schwarz-Linek U (2010) NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond. Angew Chem Int Ed 49(45):8421–8425

    Article  CAS  Google Scholar 

  • He Z, Liu K, Wang J (2018) Bioinspired materials for controlling ice nucleation, growth, and recrystallization. Acc Chem Res 51(5):1082–1091

    Article  CAS  PubMed  Google Scholar 

  • Hew CL, Slaughter D, Fletcher GL, Joshi SB (1981) Antifreeze glycoproteins in the plasma of Newfoundland Atlantic cod (Gadus morhua). Can J Zool 59(11):2186–2192

    Article  CAS  Google Scholar 

  • Hoshino T, Kiriaki M, Ohgiya S, Fujiwara M, Kondo H, Nishimiya Y, Tsuda S (2003) Antifreeze proteins from snow mold fungi. Can J Bot 81(12):1175–1181

    Article  CAS  Google Scholar 

  • Jia Z, DeLuca CI, Chao H, Davies PL (1996) Structural basis for the binding of a globular antifreeze protein to ice. Nature 384(6606):285–288

    Article  CAS  PubMed  Google Scholar 

  • Kang HJ, Baker EN (2009) Intramolecular isopeptide bonds give thermodynamic and proteolytic stability to the major pilin protein of Streptococcus pyogenes. J Biol Chem 284(31):20729–20737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HJ, Coulibaly F, Clow F, Proft T, Baker EN (2007) Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure. Science 318(5856):1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Kawahara H (2017) Cryoprotectants and ice-binding proteins. In: Psychrophiles: from biodiversity to biotechnology, Springer, Cham, pp 237–257.

  • Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics1751(2):119–139.

  • Knight CA, Cheng CC, DeVries AL (1991) Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophys J 59(2):409–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight CA, Hallett J, DeVries AL (1988) Solute effects on ice recrystallization: an assessment technique. Cryobiology 25(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Krause F, Seelert H (2008) Detection and analysis of protein-protein interactions of organellar and prokaryotic proteomes by blue native and colorless native gel electrophoresis. Curr Protocols Protein Sci 54(1):19–18

    Article  Google Scholar 

  • Kristiansen E, Zachariassen KE (2005) The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 51(3):262–280

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen E, Pedersen SA, Zachariassen KE (2008) Salt-induced enhancement of antifreeze protein activity: a salting-out effect. Cryobiology 57(2):122–129

    Article  CAS  PubMed  Google Scholar 

  • Lawrence L, Moore WJ (1951) Kinetics of the hydrolysis of simple glycine peptides. J Am Chem Soc 73(8):3973–3977

    Article  CAS  Google Scholar 

  • Leiter A, Rau S, Winger S, Muhle-Goll C, Luy B, Gaukel V (2016) Influence of heating temperature, pressure and pH on recrystallization inhibition activity of antifreeze protein type III. J Food Eng 187:53–61

    Article  CAS  Google Scholar 

  • Li N, Andorfer CA, Duman JG (1998) Enhancement of insect antifreeze protein activity by solutes of low molecular mass. J Exp Biol 201(15):2243–2251

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Yuan B, Kwon JW, Ahn M, Cui XS, Bang JK, Kim NH (2016) Effect of antifreeze glycoprotein 8 supplementation during vitrification on the developmental competence of bovine oocytes. Theriogenology 86(2):485–494

    Article  CAS  PubMed  Google Scholar 

  • Liou YC, Thibault P, Walker VK, Davies PL, Graham LA (1999) A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor. Biochemistry 38(35):11415–11424

    Article  CAS  PubMed  Google Scholar 

  • Liou YC, Tocilj A, Davies PL, Jia Z (2000) Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature 406(6793):322–324

    Article  CAS  PubMed  Google Scholar 

  • Marshall CB, Fletcher GL, Davies PL (2004) Hyperactive antifreeze protein in a fish. Nature 429(6988):153–153

    Article  CAS  PubMed  Google Scholar 

  • Micsonai A, Wien F, Kernya L, Lee YH, Goto Y, Réfrégiers M, Kardos J (2015) Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci 112(24):E3095–E3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton AJ, Vanderbeld B, Bredow M, Tomalty H, Davies PL, Walker VK (2014) Isolation and characterization of ice-binding proteins from higher plants. In: Plant Cold Acclimation, pp 255–277, Humana Press, New York

  • Mitchell DE, Cameron NR, Gibson MI (2015) Rational, yet simple, design and synthesis of an antifreeze-protein inspired polymer for cellular cryopreservation. Chem Commun 51(65):12977–12980

    Article  CAS  Google Scholar 

  • Mitchell DE, Lilliman M, Spain SG, Gibson MI (2014) Quantitative study on the antifreeze protein mimetic ice growth inhibition properties of poly (ampholytes) derived from vinyl-based polymers. Biomaterials Sci 2(12):1787–1795

    Article  CAS  Google Scholar 

  • Moffatt B, Ewart V, Eastman A (2006) Cold comfort: plant antifreeze proteins. Physiol Plant 126(1):5–16

    Article  CAS  Google Scholar 

  • Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276

    Article  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Powers TC (1975) Freezing effects in concrete. Special Publication 47:1–12

    Google Scholar 

  • Ptitsyn OB (1987) Protein folding: hypotheses and experiments. J Protein Chem 6(4):273–293

    Article  CAS  Google Scholar 

  • Qu Z, Guo S, Sproncken CC, Surís-Valls R, Yu Q, Voets IK (2019) Enhancing the Freeze–thaw durability of concrete through ice recrystallization inhibition by poly (vinyl alcohol). ACS Omega.

  • Radzicka A, Wolfenden R (1996) Rates of uncatalyzed peptide bond hydrolysis in neutral solution and the transition state affinities of proteases. J Am Chem Soc 118(26):6105–6109

    Article  CAS  Google Scholar 

  • Slaughter D, Fletcher GL, Ananthanarayanan VS, Hew CL (1981) Antifreeze proteins from the sea raven, Hemitripterus americanus. Further evidence for diversity among fish polypeptide antifreezes. J Biol Chem 256(4):2022–2026

    Article  CAS  PubMed  Google Scholar 

  • Song B, Cho JH, Raleigh DP (2007) Ionic-strength-dependent effects in protein folding: analysis of rate equilibrium free-energy relationships and their interpretation. Biochemistry 46(49):14206–14214

    Article  CAS  PubMed  Google Scholar 

  • Stubbs C, Congdon TR, Gibson MI (2019) Photo-polymerisation and study of the ice recrystallisation inhibition of hydrophobically modified poly (vinyl pyrrolidone) co-polymers. Eur Polymer J 110:330–336

    Article  CAS  Google Scholar 

  • Surís-Valls R, Voets IK (2019a) Peptidic antifreeze materials: prospects and challenges. Int J Mol Sci 20(20):5149

    Article  PubMed Central  CAS  Google Scholar 

  • Surís-Valls R, Voets IK (2019b) The impact of salts on the ice recrystallization inhibition activity of antifreeze (Glyco) proteins. Biomolecules 9(8):347

    Article  PubMed Central  CAS  Google Scholar 

  • Vance TD, Graham LA, Davies PL (2018) An ice-binding and tandem beta-sandwich domain-containing protein in Shewanella frigidimarina is a potential new type of ice adhesin. FEBS J 285(8):1511–1527

    Article  CAS  PubMed  Google Scholar 

  • Vance TD, Olijve LL, Campbell RL, Voets IK, Davies PL, Guo S (2014) Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice. Biosci Rep 34(4).

  • Voets IK (2017) From ice-binding proteins to bio-inspired antifreeze materials. Soft Matter 13(28):4808–4823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams AP (2003) Amino Acids Determination In: Encyclopedia of Food Sciences and Nutrition 2nd Ed., Academic, pp 192–197.

  • Wu DW, Duman JG, Cheng CHC, Castellino FJ (1991) Purification and characterization of antifreeze proteins from larvae of the beetle Dendroides canadensis. J Comp Physiol B 161(3):271–278

    Article  CAS  Google Scholar 

  • Wu S, Zhu C, He Z, Xue H, Fan Q, Song Y, Wang J (2017) Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials. Nat Commun 8:15154

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia X (2007) Protein isoelectric point. Bioinformatics and the Cell: Modern Computational Approaches in Genomics, Proteomics and Transcriptomics, 207-21

  • Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277(2):394–403

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Perumal S, Zhao X, Du N, Liu XY, Jia Z, Lu JR (2008) Interfacial adsorption of antifreeze proteins: a neutron reflection study. Biophys J 94(11):4405–4413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakeri B (2015) synthetic biology: a new tool for the trade. Chem BioChem 16(16):2277–2282

    CAS  Google Scholar 

Download references

Acknowledgments

This research was made possible by the Department of Civil, Environmental, and Architectural Engineering, the College of Engineering and Applied Sciences, and the Living Materials Lab at the University of Colorado Boulder. Thanks to Peter Davies at Queen's University for the gift of the Marinomonas primoryensus clones used in this study. A special thanks is given to Dr. Annette Erbse and the Biochemistry Shared Instruments Pool for assistance with CD Spectrometry.

Funding

This research was funded by the United States (US) National Science Foundation (Award No. CMMI-1727788), the National Science Foundation Graduate Research Fellowship Program, the National Highway’s Cooperative Research Program (NCHRP) (Award No. NCHRP-204), and the NIH/CU Molecular Biophysics Training Program (P.E.T.). This work represents the views of the authors and not necessarily those of the sponsors.

Author information

Authors and Affiliations

Authors

Contributions

Data curation: [EAD]; formal analysis: [EAD], [PET], and [MC]; funding acquisition: [WVSIII]; investigation: [EAD] and [PET]; methodology: [EAD], [PET], [JCC], and [WVSIII]; supervision: [JCC] and [WVSIII]; writing–original draft, [EAD]; writing–review and editing, [PET], [MC], [JCC] and [WVSIII]. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wil V. Srubar III.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Communicated by A. Driessen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4013 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delesky, E.A., Thomas, P.E., Charrier, M. et al. Effect of pH on the activity of ice-binding protein from Marinomonas primoryensis. Extremophiles 25, 1–13 (2021). https://doi.org/10.1007/s00792-020-01206-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-020-01206-9

Keywords

Navigation