Skip to main content
Log in

Physical Evidence of Stress-Induced Conformational Changes in Polymers

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Polymer mechanics and characterization is an active area of research where a keen effort is directed towards gaining a predictive and correlative relationship between the applied loads and the specific conformational motions of the macromolecule chains.

Objective

Therefore, the objective of this research is to introduce the preliminary results based on a novel technique to in situ probe the mechanical properties of polymers using non-invasive, non-destructive, and non-contact terahertz spectroscopy.

Methods

A dielectric elastomer actuator (DEA) structure is used as the loading mechanism to avoid obscuring the beam path of transmission terahertz time-domain spectroscopy. In DEAs, the applied voltage results in mechanical stresses under the active electrode area with far-reaching stretching in the passive area. Finite element analysis is used to model and simulate the DEA to quantify the induced stresses at the observation site over a voltage range spanning from 0 V to 3000 V. Additionally, a novel analysis technique is introduced based on the Hilbert-Huang transform to exploit the time-domain signals of the ultrathin elastomeric film and to defy the limits set forth by the current state-of-the-art analysis techniques.

Results

The computational result shows a nonlinear relationship between the effective stresses and the applied voltage. Analysis of the terahertz time-domain signals shows a shift in the delay times and a decrease in signal peak amplitudes, whereas these characteristics are implicitly related to the change in the index of refraction.

Conclusions

In all, the results evidentially signify the interrelationship between the conformational changes and applied mechanical stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kremer K, Müller-Plathe F (2002) Multiscale simulation in polymer science. Mol Simul 28:729–750. https://doi.org/10.1080/0892702021000002458

    Article  Google Scholar 

  2. Gartner TE, Jayaraman A (2019) Modeling and simulations of polymers: a roadmap. Macromolecules 52:755–786. https://doi.org/10.1021/acs.macromol.8b01836

    Article  Google Scholar 

  3. Ngai KL, Plazek DJ (1995) Identification of different modes of molecular motion in polymers that cause thermorheological complexity. Rubber Chem Technol 68:376–434

    Article  Google Scholar 

  4. Shenogina NB, Tsige M, Patnaik SS, Mukhopadhyay SM (2012) Molecular modeling approach to prediction of thermo-mechanical behavior of thermoset polymer networks. Macromolecules 45:5307–5315. https://doi.org/10.1021/ma3007587

    Article  Google Scholar 

  5. Glotzer SC, Paul W (2002) Molecular and mesoscale simulation methods for polymer materials. Annu Rev Mater Sci 32:401–436. https://doi.org/10.1146/annurev.matsci.32.010802.112213

    Article  Google Scholar 

  6. Frenkel D (2013) Simulations: the dark side. Eur Phys J Plus 128: https://doi.org/10.1140/epjp/i2013-13010-8

  7. Bergstrom J (2015) Mechanics of solid polymers theory and computational modeling. Matthew Deans

  8. Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412. https://doi.org/10.1016/0022-5096(93)90013-6

    Article  MATH  Google Scholar 

  9. Flory PJ (1953) Principles of polymer chemistry. Cornell Unversity Press

  10. Bower AF (2010) Applied mechanics of solids. CRC Press

  11. Timoshenko S, Goodier JN (1951) Theory of elasticity. McGraw-Hill book Company

  12. Youssef G, Gupta V (2012) Dynamic response of polyurea subjected to nanosecond rise-time stress waves. Mech Time-Depend Mat 16(3):317–328

  13. Youssef G, Gupta V (2012) Dynamic tensile strength of polyurea. J Mater Res 27:494–499. https://doi.org/10.1557/jmr.2011.405

    Article  Google Scholar 

  14. Sharpe W (2008) Springer handbook of experimental solid mechanics. Springer Science+Business Media, Baltimore

    Book  Google Scholar 

  15. Kornbluh RD, Pelrine RE, Joseph J (1995) Elastomeric dielectric artificial muscle actuators for small robots. Proc Mater Res Soc Symp 600:119–130

    Article  Google Scholar 

  16. Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors Actuators A Phys 64:77–85. https://doi.org/10.1016/S0924-4247(97)01657-9

    Article  Google Scholar 

  17. Kornbluh R, Pelrine R, Joseph J, Pei Q, Chiba S (2000) Ultra-high strain response of elastomeric polymer dielectrics. Mater Res Soc Symp - Proc 600:119–130. https://doi.org/10.1557/proc-600-119

    Article  Google Scholar 

  18. Full J, Meijer K (2000) Artificial muscles versus natural actuators from frogs to flies 3987:2–9

  19. Harris D, Bertolucci M (1978) Symmetry and spectroscopy. Oxford University Press, Inc.

  20. Siesler HW, Holland-Moritz K (1980) Infrared and Raman spectroscopy of polymers. Marcel Dekker, Inc.

  21. Koenig JL (1999) Spectroscopy of polymers. Elsevier

  22. Götz A, Nikzad-Langerodi R, Staedler Y, Bellaire A, Saukel J (2020) Apparent penetration depth in attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy of Allium cepa L. epidermis and cuticle. Spectrochim Acta - Part A Mol Biomol Spectrosc 224:1–6. https://doi.org/10.1016/j.saa.2019.117460

    Article  Google Scholar 

  23. Gaigneaux A, Goormaghtigh E (2013) A new dimension for cell identification by FTIR spectroscopy: depth profiling in attenuated total reflection. Analyst 138:4070–4075. https://doi.org/10.1039/c3an00193h

    Article  Google Scholar 

  24. Lee YS (2009) Principles of terahertz science and technology

  25. Coutaz J-L, Garet F, Wallace VP (2018) Principles of Terahertz time-domain spectroscopy: an introductory textbook. CRC Press

  26. Saeedkia D (ed) (2013) Handbook of terahertz technology for imaging, sensing, and communications. Elsevier

  27. Dexheimer SL (2008) Terahertz spectroscopy: principles and applications. Taylor & Francis, Boca Raton

    Google Scholar 

  28. Terao W, Mori T, Fujii Y, Koreeda A, Kabeya M, Kojima S (2018) Boson peak dynamics of natural polymer starch investigated by terahertz time-domain spectroscopy and low-frequency Raman scattering. Spectrochim Acta - Part A Mol Biomol Spectrosc 192:446–450. https://doi.org/10.1016/j.saa.2017.11.051

    Article  Google Scholar 

  29. Iijima Y, Mori T, Kojima S, et al (2018) Terahertz Time-Domain Spectroscopy and Low-Frequency Raman Scattering of Boson Peak Dynamics of Lithium Borate Glasses. Int Conf Infrared, Millimeter, Terahertz Waves, IRMMW-THz 2018-Septe:4–5. https://doi.org/10.1109/IRMMW-THz.2018.8510433

  30. Bank MI, Krimm S (1968) Lattice studies of cristalline strucure of polyethylene. J Appl Phys 39:4951–4958

    Article  Google Scholar 

  31. Fuse N, Sato R, Mizuno M, Fukunaga K, Itoh K, Ohki Y (2010) Observation and analysis of molecular vibration modes in polylactide at terahertz frequencies. Jpn J Appl Phys 49:1024021–1024028. https://doi.org/10.1143/JJAP.49.102402

    Article  Google Scholar 

  32. Hoshina H, Morisawa Y, Sato H, Kamiya A, Noda I, Ozaki Y, Otani C (2010) Higher order conformation of poly(3-hydroxyalkanoates) studied by terahertz time-domain spectroscopy. Appl Phys Lett 96:3–6. https://doi.org/10.1063/1.3358146

    Article  Google Scholar 

  33. Hoshina H, Morisawa Y, Sato H, Minamide H, Noda I, Ozaki Y, Otani C (2011) Polarization and temperature dependent spectra of poly(3-hydroxyalkanoate)s measured at terahertz frequencies. Phys Chem Chem Phys 13:9173–9179. https://doi.org/10.1039/c0cp02435j

    Article  Google Scholar 

  34. Neu J, Nikonow H, Schmuttenmaer CA (2018) Terahertz spectroscopy and density functional theory calculations of dl -Norleucine and dl -methionine. J Phys Chem A 122:5978–5982. https://doi.org/10.1021/acs.jpca.8b04978

    Article  Google Scholar 

  35. Neu J, Stone EA, Spies JA, Storch G, Hatano AS, Mercado BQ, Miller SJ, Schmuttenmaer CA (2019) Terahertz spectroscopy of Tetrameric peptides. J Phys Chem Lett 10:2624–2628. https://doi.org/10.1021/acs.jpclett.9b01091

    Article  Google Scholar 

  36. Neu J, Schmuttenmaer CA (2020) Terahertz spectroscopy and density functional theory investigation of the dipeptide L-Carnosine. J Infrared, Millimeter, Terahertz Waves 41:1366–1377. https://doi.org/10.1007/s10762-019-00636-7

    Article  Google Scholar 

  37. Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer (Guildf) 39:267–273. https://doi.org/10.1016/S0032-3861(97)00229-2

    Article  Google Scholar 

  38. Cunningham PD, Valdes NN, Vallejo FA, Hayden LM, Polishak B, Zhou XH, Luo J, Jen AKY, Williams JC, Twieg RJ (2011) Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. J Appl Phys 109:0–5. https://doi.org/10.1063/1.3549120

  39. Zhao Y, Li Z, Liu J, Hu C, Zhang H, Qin B, Wu Y (2018) Intermolecular vibrational modes and H-bond interactions in crystalline urea investigated by terahertz spectroscopy and theoretical calculation. Spectrochim Acta - Part A Mol Biomol Spectrosc 189:528–534. https://doi.org/10.1016/j.saa.2017.08.041

    Article  Google Scholar 

  40. Podzorov A, Gallot G (2010) Density of states and vibrational modes of PDMS studied by terahertz time-domain spectroscopy. Chem Phys Lett 495:46–49. https://doi.org/10.1016/j.cplett.2010.06.050

    Article  Google Scholar 

  41. Wietzke S, Jansen C, Jung T et al (2009) Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers. Optics Express 17:19006–19014

    Article  Google Scholar 

  42. Youssef G, Huynh NU Integrated temperature-controlled, ultrahigh strain rate loading, and spectroscopy apparatus for dynamic characterization of materials. U.S Patent Application No. 62/929,586

  43. Plante JS, Dubowsky S (2006) Large-scale failure modes of dielectric elastomer actuators. Int J Solids Struct 43:7727–7751. https://doi.org/10.1016/j.ijsolstr.2006.03.026

    Article  MATH  Google Scholar 

  44. Wissler M (2007) Modeling dielectric elastomer actuators (Doctoral dissertation, ETH Zurich)

  45. Scheller M (2014) Data extraction from terahertz time domain spectroscopy measurements. J Infrared Millimeter Terahertz Waves 35:638–648. https://doi.org/10.1007/s10762-014-0053-4

    Article  Google Scholar 

  46. Dhillon SS, Vitiello MS, Linfield EH, Davies AG, Hoffmann MC, Booske J, Paoloni C, Gensch M, Weightman P, Williams GP, Castro-Camus E, Cumming DRS, Simoens F, Escorcia-Carranza I, Grant J, Lucyszyn S, Kuwata-Gonokami M, Konishi K, Koch M, Schmuttenmaer CA, Cocker TL, Huber R, Markelz AG, Taylor ZD, Wallace VP, Axel Zeitler J, Sibik J, Korter TM, Ellison B, Rea S, Goldsmith P, Cooper KB, Appleby R, Pardo D, Huggard PG, Krozer V, Shams H, Fice M, Renaud C, Seeds A, Stöhr A, Naftaly M, Ridler N, Clarke R, Cunningham JE, Johnston MB (2017) The 2017 terahertz science and technology roadmap. J Phys D Appl Phys 50:043001. https://doi.org/10.1088/1361-6463/50/4/043001

    Article  Google Scholar 

  47. Naito K, Kagawa Y, Utsuno S, Naganuma T, Kurihara K (2009) Dielectric properties of woven fabric glass fiber reinforced polymer-matrix composites in the THz frequency range. Compos Sci Technol 69:2027–2029. https://doi.org/10.1016/j.compscitech.2009.04.001

    Article  Google Scholar 

  48. Fischer BM, Wietzke S, Reuter M, Peters O, Gente R, Jansen C, Vieweg N, Koch M (2013) Investigating material characteristics and morphology of polymers using terahertz technologies. IEEE Trans Terahertz Sci Technol 3:259–268. https://doi.org/10.1109/TTHZ.2013.2255916

    Article  Google Scholar 

  49. Fedulova EV, Nazarov MM, Angeluts AA et al (2012) Studying of dielectric properties of polymers in the terahertz frequency range. Saratov Fall Meet 2011 Opt Technol Biophys Med XIII 8337:83370I. https://doi.org/10.1117/12.923855

    Article  Google Scholar 

  50. Wietzke S, Jansen C, Reuter M, Jung T, Kraft D, Chatterjee S, Fischer BM, Koch M (2011) Terahertz spectroscopy on polymers : a review of morphological studies. J Mol Struct 1006:41–51. https://doi.org/10.1016/j.molstruc.2011.07.036

    Article  Google Scholar 

  51. Jepsen PU, Fischer BM (2005) Dynamic range in terahertz time-domain transmission and reflection spectroscopy. Opt Lett 30:29–31. https://doi.org/10.1364/ol.30.000029

    Article  Google Scholar 

  52. Withayachumnankul W, Fischer BM, Abbott D (2008) Material thickness optimization for terahertz time-domain spectroscopy. Opt Soc Am 16:7382–7396

    Google Scholar 

  53. Withayachumnankul W, Fischer BM, Lin H, Abbott D (2008) Uncertainty in terahertz time-domain spectroscopy measurement. J Opt Soc Am B 25:229–247. https://doi.org/10.1007/s10762-016-0318-1

    Article  Google Scholar 

  54. Pupeza I, Wilk R, Koch M (2007) Highly accurate optical material parameter determination with THz time-domain spectroscopy 15:1598–1609

  55. Li X, Hong Z, He J, Chen Y (2010) Precisely optical material parameter determination by time domain waveform rebuilding with THz time-domain spectroscopy. Opt Commun 283:4701–4706. https://doi.org/10.1016/j.optcom.2010.06.088

    Article  Google Scholar 

  56. Scheller M (2011) Real-time terahertz material characterization by numerical three-dimensional optimization. Opt Express 19:10647–10655. https://doi.org/10.1364/oe.19.010647

    Article  Google Scholar 

  57. Bernier M, Garet F, Coutaz JL (2013) Precise determination of the refractive index of samples showing low transmission bands by THz time-domain spectroscopy. IEEE Trans Terahertz Sci Technol 3:295–301. https://doi.org/10.1109/TTHZ.2013.2247793

    Article  Google Scholar 

  58. Duvillaret L, Garet F, Coutaz J-L (1999) Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy. Appl Opt 38:409–415. https://doi.org/10.1364/ao.38.000409

    Article  Google Scholar 

  59. Yeoh OH (1993) Some forms of the strain energy function for rubber. Rubber Chem Technol 66:754–771

    Article  Google Scholar 

  60. Data T (2011) VHB ™ Tapes product description :

  61. Huang NE, Wu Z, Long SR, Arnold KC, Chen X, Blank K (2009) On instantaneous frequency. Advances in adaptive data analysis. 2009 Apr;1(02):177–229. https://doi.org/10.1142/S1793536909000096

  62. Huang NE, Shen S (2014) Hilbert-Huang transform and its applications, vol 16. World Scientific

Download references

Acknowledgements

The research leading to these results was supported in part by the United States Department of Defense under Grant Agreement No. W911NF1410039 and W911NF1810477. The authors are grateful to the guidance of Dr. Roshdy Barsoum of the Office of Naval Research. The research was also supported by the National Science Foundation under Award No. 1925539.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Youssef.

Ethics declarations

Ethical Statement/Conflict of Interest

The authors confirm that the manuscript has only been submitted to the Journal of Experimental Mechanics for consideration. The authors contributed equally to the research leading to the publication as well as to the composition of the manuscript. The authors further report no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, N., Youssef, G. Physical Evidence of Stress-Induced Conformational Changes in Polymers. Exp Mech 61, 469–481 (2021). https://doi.org/10.1007/s11340-020-00673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-020-00673-7

Keywords

Navigation