Skip to main content
Log in

Calcium signaling modulates the dynamics of cilia and flagella

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

To adapt to changing environments cells must signal and signaling requires messengers whose concentration varies with time in space. We here consider the messenger role of calcium ions implicated in regulation of the wave-like bending dynamics of cilia and flagella. The emphasis is on microtubules as polyelectrolytes serving as transmission lines for the flow of Ca2+ signals in the axoneme. This signaling is superimposed with a geometric clutch mechanism for the regulation of flagella bending dynamics and our modeling produces results in agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

taken from Sartori (2015), page 87, Fig A1

Similar content being viewed by others

References

  • Bannai H, Yoshimura M, Takahashi K, Shingyoji C (2000) Calcium regulation of microtubule sliding in reactivated sea urchin sperm flagella. J Cell Sci 113:831–839

    CAS  PubMed  Google Scholar 

  • Bayly PV, Wilson KS (2014) Equations of interdoublet separation during flagella motion reveal mechanisms of wave propagation and instability. Biophys J 107:1756–1772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    CAS  PubMed  Google Scholar 

  • Brokaw CJ (2002) Computer simulations of flagellar movement viii: coordination of dynein by local curvature control can generate helical bending waves. Cell Motil Cytoskeleton 53:103–124

    PubMed  Google Scholar 

  • Brokaw CJ (2014) Computer simulation of flagellar movement X: doublet pair splitting and bend propagation modeled using stochastic dynein kinetics. Cytoskeleton 71:273–284

    CAS  PubMed  Google Scholar 

  • Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+signalling. Nat Rev Neurosci 8:182–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cantero MDR, Perez PL, Scarinci N, Cantiello HF (2019) Two-dimensional brain microtubule structures behave as memristive devices. Sci Rep 9:12398

    PubMed  PubMed Central  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    CAS  PubMed  Google Scholar 

  • DeCaen PG, Delling M, Vien TN, Clapham DE (2013) Direct recording and molecular identification of the calcium channel of primary cilia. Nature 504:315–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doerner JF, Delling M, Clapham DE (2015) Ion channels and calcium signaling in motile cilia. eLife 4: e11066.

  • Frieden BR, Gatenby RA (2019) Signal transmission through elements of cytoskeleton from an optimized information network in eucariotic cells. Sci Rep 9:6110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friesen DE, Craddock TJA, Priel A, Tuszynski JA (2014) Fields of the Cell, p243–265

  • Gadêlha H, Hernández-Herrera P, Montoya F, Darszon A, Corkidi G (2020) Human sperm uses asymmetric and anisotropic flagellar controls to regulate swimming symmetry and cell steering. Sci Adv 6:31, eaba5168

  • Hilfinger A, Chattopadyay AK, Jülicher F (2009) Nonlinear dynamics of cilia and flagella. Phys Rev E 79:051918

    Google Scholar 

  • Hines M, Blum JJ (1978) Bend propagation in flagella. I. Derivation of equations of motion and their simulation. Biophys J 23:41–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howard J (2009) Mechanical signaling in networks of motor and cytoskeletal proteins. Annu Rev Biophys 38:217–234

    CAS  PubMed  Google Scholar 

  • Hunley C, Uribe D, Marucho M (2018) A multi-scale approach to describe electrical impulses propagating along actin filaments in both intracellular and in vitro conditions. RSC Adv 8:12017–12028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikegami K, Sato S, Nakamura K, Ostrowski LE, Setou M (2010) Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. PNAS 107:10490–10495

    CAS  PubMed  Google Scholar 

  • Kalra A, Patel S, Bhuiyan A, Preto J, Scheuer K, Mohammed U, Lewis J, Rezania V, Shankar K, Tuszynski JA (2019) On the capacitive properties of individual microtubules and their meshworks. arXiv:1905.02865

  • Kikkawa M (2013) Big steps toward understanding dynein. J Cell Biol 202(1):15–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Nicastro D (2018) Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science 360:3687

    Google Scholar 

  • Lindeman CB (2002) Geometric clutch Model Version 3: The role of the inner and outer arm dyneins in the ciliary beat. Cell Mot Cytoskel 52:242–254

    Google Scholar 

  • Lindeman C (2007) The geometric clutch as a working hypothesis for future research on cilia and flagella. Ann N Y Acad Sci 1101:477–493

    Google Scholar 

  • Manning GS (2008) Approximate solutions to some problems in polyelectrolyte theory involving nonuniform charge distributions. Macromolecules 41:6217–6227

    CAS  Google Scholar 

  • Manning GS (2011) A counterion condensation theory for the relaxation, rise and frequency dependence of the parallel polarization of rodlike polyelectrolytes. Eur Phys J E 34:1–7

    CAS  PubMed  Google Scholar 

  • Minoura J, Muto E (2006) Dielectric measurement of individual microtubules using the electroorientation method. Biophys J 90:3739–3748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, McIntosh JR (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944–948

    CAS  PubMed  Google Scholar 

  • Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837

    CAS  PubMed  Google Scholar 

  • Poznanski RR, Cacha LA, Al-Wesabi YMS, Ali J, Bahadoran M, Yupapin PP, Yunus J (2017) Erratum: Solitonic conduction of electrotonic signals in neuronal branchlets with polarized microstructure. Sci Rep 7:2746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Priel A, Ramos AJ, Tuszynski JA, Cantiello HF (2006) A biopolymer transistor: electrical amplification by microtubules. Biophys J 90:4639–4643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Priel A, Ramos AJ, Tuszynski JA, Cantiello HF (2008) Effect of calcium on electrical energy transfer by microtubules. J Biol Phys 34:475–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel-Kruse IH, Hilfinger A, Howard J, Jϋlicher F (2007) How molecular motors shape the flagellar beat. HFSP J 1:192–208

    PubMed  PubMed Central  Google Scholar 

  • Sakato M, King SM (2003) Calcium regulates atp-sensitive microtubule binding by Chlamydomonas outer arm dynein. JBC 278:43571–43579

    CAS  Google Scholar 

  • Sakato M, Sakakibara H, King SM (2007) Chlamydomonas outer arm dynein alters conformation in response to Ca2+. Mol Biol Cell 18:3620–3634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santelices IB, Friesen DE, Bell C, Hough CM, Xiao J, Kalra A, Kar P, Freedman H, Rezania V, Lewis JD, Shankar K, Tuszynski JA (2017) Response to alternating electric fields of tubulin dimers and microtubule ensemles in electrolytic solutions. Sci Rep 7:9594

    PubMed  PubMed Central  Google Scholar 

  • Sartori P (2015) Effect of curvature and normal forces on motor regulation of cilia. PhD Thesis, TechnischeUniversität Dresden, Germany

  • Sartori P, Geyer V, Scholich A, Jülicher F, Howard J (2016) Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella. eLife 5:e13258

  • Sartori P, Geyer V, Scholich A, Jϋlicher F, Howard J (2016) Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella. eLife 5:e13258

  • Satarić MV, Ilić DI, Ralević N, Tuszynski JA (2009) A nonlinear model of ionic wave propagation along microtubules. Eur Biophys J 38:637–647

    PubMed  Google Scholar 

  • Satarić MV, Nemeš T, Satarić BM, Sekulić D, Zdravković S (2020) Calcium ions tune the beats of cilia and flagella. BioSystems 196:104172

    PubMed  Google Scholar 

  • Satarić MV, Nemeš T, Sekulić D, Tuszynski JA (2019) How signals of calcium ions initiate the beats of cilia and flagella. BioSystems 182:42–51

    PubMed  Google Scholar 

  • Satarić MV, Sekulić D, Živanov M (2010) Solitonic ionic currents along microtubules. J Comput Theor Nanosci 7:1–10

    Google Scholar 

  • Sekulić DL, Satarić BM, Tuszynski JA, Satarić MV (2011) Nonlinear ionic pulses along microtubules. Eur Phys J E 34:45–49

    Google Scholar 

  • Sekulić DL, Satarić BM, Zdravković S, Bugay AN, Satarić MV (2016) Nonlinear dynamics of c-terminal tails in cellular microtubules. Chaos 26:073119

    PubMed  Google Scholar 

  • Shen C, Guo W (2018) Ion permeability of a microtubule in neuron environment. J Phys Chem Lett 9:2009–2014

    CAS  PubMed  Google Scholar 

  • Siwy ZS, Powell MR, Petrov A, Kalman E, Trautman C, Eisenberg RS (2006) Calcium induced voltage gating in single conical nanopores. Nano Lett 8:1729–1734

    Google Scholar 

  • Sleigh MA, Blake JR, Liron N (1988) The propulsion of mucus by cilia. Am Rev Respir Dis 137:726–741

    CAS  PubMed  Google Scholar 

  • Smith EF (2002) Regulation of flagellar dynein by calcium and a role of an axonemal calmodulin dependent kinase. Mol Biol Cell 13:3303–3313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strynadka NC, James MN (1989) Crystal structure of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem 58:951–998

    CAS  PubMed  Google Scholar 

  • Tuszynski JA, Friesen D, Freedman H, Sbitnev VI, Kim H, Santelices I, Kalra AP, Patel SD, Shankar K, Chua LO (2020) Microtubules as sub-cellular memristors. Sci Rep 10:2108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuszynski JA, Satarić MV, Sekulić DL, Satarić BM, Zdravković S (2018) Nonlinear calcium ion waves along actin filaments control active hair-bundle motility. BioSystems 173:181–190

    CAS  PubMed  Google Scholar 

  • Vernon G, Woolley DM (2004) Basal sliding and the mechanics of oscillation in a mammalian sperm flagellum. Biophys J 87:3934–3944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witman GB (2009) The Chlamydomonas Sourcebook; Cell Motility and Behaviour. Volume 3. Second ed., Academic Press

Download references

Acknowledgements

This research was financially supported by the Provincial Secretariat for Higher Education and Scientific Research of AP Vojvodina (Project No. 1144512708/201603), also by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. OI171009, III43008, and III45010) and by project of Serbian Academy of Sciences and Arts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nemeš.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Finding the second derivative in Eq. (3.32).

$$\frac{{d}^{2}}{d{s}^{2}}\left[tanh\left(1\right)-tanh\left(\frac{s}{L}-\tau \right)\right]\frac{{\text{d}}\phi }{ds}=\frac{d}{ds}\left[\frac{-1}{L}\frac{1}{{cosh}^{2}\left(\frac{s}{L}-\tau \right)}\left(\frac{{\text{d}}\phi }{ds}\right)+\left[tanh\left(1\right)-tanh\left(\frac{s}{L}-\tau \right)\right]\frac{{d}^{2}\phi }{d{s}^{2}}\right]= \frac{-1}{L}\frac{1}{{cosh}^{2}\left(\frac{s}{L}-\tau \right)}\left(\frac{{d}^{2}\phi }{d{s}^{2}}\right)+\frac{2}{{L}^{2}}\frac{tanh\left(\frac{s}{L}-\tau \right)}{{cosh}^{2}\left(\frac{s}{L}-\tau \right)}\left(\frac{{\text{d}}\phi }{ds}\right)-\frac{1}{L}\frac{1}{{cosh}^{2}\left(\frac{s}{L}-\tau \right)}\left(\frac{{d}^{2}\phi }{d{s}^{2}}\right)+\left[tanh\left(1\right)-tanh\left(\frac{s}{L}-\tau \right)\right]\frac{{d}^{3}\phi }{d{s}^{3}}=\frac{2}{L}\frac{1}{{cosh}^{2}\left(\frac{s}{L}-\tau \right)}\left(\frac{{d}^{2}\phi }{d{s}^{2}}\right)+\frac{2}{{L}^{2}}\frac{tanh\left(\frac{s}{L}-\tau \right)}{{cosh}^{2}\left(\frac{s}{L}-\tau \right)}\left(\frac{{\text{d}}\phi }{ds}\right)+\left[tanh\left(1\right)-tanh\left(\frac{s}{L}-\tau \right)\right]\frac{{d}^{3}\phi }{d{s}^{3}}$$
(A.1.1)

Appendix 2

We start with the dimensionless variable \(\xi \)

$$\xi =\frac{s}{L};\frac{{\text{d}}\phi }{ds}=\frac{1}{L}\frac{{\text{d}}\phi }{{\text{d}}\xi }; \frac{{d}^{2}\phi }{d{s}^{2}}=\frac{1}{{L}^{2}}\frac{{d}^{2}\phi }{d{\xi }^{2}}; \frac{{d}^{3}\phi }{d{s}^{3}}=\frac{1}{{L}^{3}}\frac{{d}^{3}\phi }{d{\xi }^{3}}.$$
(A.2.1)

so that Eq. (3.30) now reads:

$$\frac{{d}^{4}\phi }{d{\xi }^{4}}-\frac{{C}_{1}\left(\sigma \right)L}{\kappa }\left[tanh\left(1\right)-tanh\left(\xi -\tau \right)\right]\left(\frac{{d}^{3}\phi }{d{\xi }^{3}}\right)+\left[\frac{2L{C}_{1}\left(\sigma \right)}{\kappa }\frac{1}{{cosh}^{2}\left(\xi -\tau \right)}-\frac{{C}_{2}\left(\sigma \right){L}^{2}}{\kappa }\right]\left(\frac{{d}^{2}\phi }{d{\xi }^{2}}\right)-\frac{2L{C}_{1}\left(\sigma \right)}{\kappa }\left[\frac{tanh\left(\xi -\tau \right)}{{cosh}^{2}\left(\xi -\tau \right)}\right]\left(\frac{{\text{d}}\phi }{{\text{d}}\xi }\right)+\frac{\sigma {C}_{N}{L}^{4}}{\kappa }\phi =0.$$
(A.2.2)

Using the abbreviations for \({C}_{1}\left(\sigma \right)\), \({C}_{2}\left(\sigma \right)\), Eqs. (3.34, 3.35) we go over to new ones \({\lambda }_{1}\), \({\lambda }_{2}\) and \(\gamma \) as expressed in the set of Eqs. (3.38, 3.39, 3.40). We just illustrate the specified numerical calculation for parameter:

$$\gamma =\frac{i\omega {C}_{N}{L}^{4}}{\kappa }=\frac{310\frac{1}{s}\cdot 2.5\cdot {10}^{-3}\frac{Ns}{{m}^{2}}\cdot {\left(12\cdot {10}^{-6}\right)}^{4}{m}^{4}}{5.22\cdot {10}^{-22}N{m}^{2}}\left(i\right)=32i.$$
(A.2.3)

Similarly, we completed the explicit form of Eq. (3.41).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satarić, M.V., Zdravković, S., Nemeš, T. et al. Calcium signaling modulates the dynamics of cilia and flagella. Eur Biophys J 49, 619–631 (2020). https://doi.org/10.1007/s00249-020-01471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-020-01471-8

Keywords

Navigation