Skip to main content
Log in

Analysis of the Long-Term Soil Respiration Dynamics in the Forest and Meadow Cenoses of the Prioksko-Terrasny Biosphere Reserve in the Perspective of Current Climate Trends

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A combined analysis of the current climate trends and the dynamics of soil respiration under soddy–weakly podzolic sandy-loamy soil (Entic Podzol (Arenic)) in the forest and meadow cenoses in the Prioksko-Terrasny Biosphere Reserve (southern part of the Moscow oblast) is performed. During the observation period (1998–2018), distinct trends of an increase in the average annual air temperature (Tair) and aridity of the summer season as well as a decrease in the duration of stable snow cover are observed. A general trend of a decrease in the total CO2 fluxes from the Entic Podzol (Arenic) under a forest and a meadow for all seasons of the year and throughout the year is also observable on this background. The linear trends of a decrease in the annual and fall seasonal CO2 fluxes from the soils in both cenoses are statistically significant (P < 0.05). Over the 21-year observation period, the monthly average CO2 fluxes from soils have tightly correlated with the average monthly Tair (r = 0.78–0.84, P < 0.001). In dry years, the temperature sensitivity of soils expressed via the Q10 coefficient is by 10–12% lower, than in the years with normal moistening. The average long-term values of annual soil respiration (AnSR) in the forest and meadow cenoses amount to 581 ± 54 and 727 ± 71 g C/(m2 year), respectively, with an interannual variation of 20–22%. The AnSR and summer hydrothermal coefficient are the most closely related explaining 51–56% of the variance in annual CO2 fluxes from soils. The warm season (May–October), which coincides with the period of active plant vegetation, accounts for 73–77% of the AnSR. However, the share of the cold season (November–April) in the annual CO2 flux from soils may reach 38–39% in individual years. Expansion of the network of stationary long-term year-round monitoring of soil respiration is a necessary condition for obtaining both more realistic estimates of the CO2 fluxes from soils and predictions of the ecosystem responses to the current and future climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Technical Regulations, Vol. 1: General Meteorological Standards and Recommended Practices (World Meteorological Organization, Geneva, 2017; Moscow, 2017).

  2. S. K. Gulev, V. M. Kattsov, and O. N. Solomina, “Global warming continues,” Herald Russ. Acad. Sci. 78, 44–50 (2008).

    Google Scholar 

  3. G. A. Zavarzin, Lectures on the Environmental Biology (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  4. G. A. Zavarzin and V. N. Kudeyarov, “Soil as the key source of carbonic acid and reservoir of organic carbon on the territory of Russia,” Herald Russ. Acad. Sci. 76, 12–26 (2006).

    Google Scholar 

  5. D. G. Zamolodchikov, V. O. Lopes de Gerenyu, D. V. Karelin, A. I. Ivashchenko, and O. V. Chestnykh, “Carbon emission by the southern tundra during cold seasons,” Dokl. Biol. Sci. 372, 312–314 (2000).

    Google Scholar 

  6. A. N. Zolotokrylin, V. V. Vinogradova, and V. A. Cherenkova, “Dynamics of droughts in European Russia under conditions of climate global warming,” Probl. Ekol. Monit. Model. Ekosist., No. 21, 160–182 (2007).

  7. D. V. Karelin and D. G. Zamolodchikov, Carbon Budget in Cryogenic Ecosystems (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  8. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  9. Classification and Diagnostics of Soils of the USSR (Kolos, Moscow, 1977) [in Russian].

  10. V. N. Kudeyarov, F. I. Khakimov, N. F. Deeva, A. A. Il’ina, T. V. Kuznetsova, and A. V. Timchenko, “Assessment of respiration of Russian soils,” Pochvovedenie, No. 1, 33–42 (1995).

    Google Scholar 

  11. I. N. Kurganova, V. O. Lopes de Gerenyu, L. N. Rozanova, T. N. Myakshina, D. V. Sapronov, and V. N. Kudeyarov, “Long-term monitoring of CO2 emission from soddy-podzolic soil: analysis of the impact of hydrothermal conditions and land use,” Probl. Ekol. Monit. Model. Ekosist. 21, 23–44 (2007).

    Google Scholar 

  12. A. A. Larionova, I. V. Yevdokimov, I. N. Kurganova, D. V. Sapronov, L. G. Kuznetsova, and V. O. Lopes de Gerenyu, “Root respiration and its contribution to the CO2 emission from soil,” Eurasian Soil Sci. 36, 173–184 (2003).

    Google Scholar 

  13. A. V. Makhnykina, A. S. Prokushkin, O. V. Menyailo, S. V. Verkhovets, I. I. Tychkov, A. V. Urban, A. V. Rubtsov, N. N. Koshurnikova, and E. A. Vaganov, “The impact of climatic factors on CO2 emissions from soils of middle-taiga forests in Central Siberia: emission as a function of soil temperature and moisture,” Russ. J. Ecol. 51, 46–56 (2020).

    Google Scholar 

  14. I. K. Rozgacheva, “Forecast of climate change in the Earth,” Klim. Prirod., No. 1, 3–9 (2012).

  15. Assessment Report of Rosgidromet on Climate Change and Its Consequences in the Russian Federation: Technical Summary (Rosgidromet, Moscow, 2008) [in Russian].

  16. Second Assessment Report of Rosgidromet on Climate Change and Its Consequences in the Russian Federation: General Summary (Rosgidromet, Moscow, 2014) [in Russian].

  17. A. V. Smagin, “The gas function of soils,” Eurasian Soil Sci. 33, 1211–1223 (2000).

    Google Scholar 

  18. D. G. Fedorov-Davydov, “Respiratory activity in tundra biogeocenoses and soils of the Kolyma Lowland,” Pochvovedenie, No. 3, 291–301 (1997).

    Google Scholar 

  19. V. A. Cherenkova and A. N. Zolotokrylin, “Comparison of quantitative parameters of droughts,” Fundam. Prikl. Klimatol., No. 2, 79–94 (2016).

  20. M. Adachi, A. Ito, S. Yonemura, and W. Takeuchi, “Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data,” J. Environ. Manage. 200, 97–104 (2017).

    Google Scholar 

  21. M. Bahn, M. Reichstein, E. A. Davidson, J. Grünzweig, M. Jung, M. S. Carbone, D. Epron, et al., “Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes,” Biogeosciences 7 (7), 2147–2157 (2010).

    Google Scholar 

  22. S. Bokhorst, G. K. Phoenix, J. W. Bjerke, T. V. Callaghan, F. Huyer-Brugman, and M. P. Berg, “Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa,” Global Change Biol. 18 (3), 1152–1162 (2012).

    Google Scholar 

  23. B. Bond-Lamberty and A. Thomson, “A global database of soil respiration data,” Biogeosciences 7 (6), 1915–1926 (2010).

    Google Scholar 

  24. B. Bond-Lamberty and A. Thomson, “Temperature-associated increases in the global soil respiration record,” Nature 464 (7288), 579–582 (2010).

    Google Scholar 

  25. R. D. Boone, K. J. Nadelhoffer, J. D. Canary, and J. P. Kaye, “Roots exert a strong influence on the temperature sensitivity of soil respiration,” Nature 396 (6711), 570–572 (1998).

    Google Scholar 

  26. E. A. Davidson and I. A. Janssens, “Temperature sensitivity of soil carbon decomposition and feedbacks to climate change,” Nature 440 (7081), 165–173 (2006).

    Google Scholar 

  27. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (Food and Agriculture Organization, Rome, 2014).

  28. P. Friedlingstein, M. W. Jones, M. O’Sullivan, R. M. Andrew, J. Hauck, G. P. Peters, W. Peters, et al., “Global carbon budget 2019,” Earth Syst. Sci. Data 11 (4), 1783–1838 (2019).

    Google Scholar 

  29. E. A. Golovatskaya and E. A. Dyukarev, “Carbon budget of oligotrophic mire sites in the Southern Taiga of Western Siberia,” Plant Soil 315 (1–2), 19–34 (2009).

    Google Scholar 

  30. P. M. Groffman, L. E. Rustad, P. H. Templer, J. L. Campbell, L. M. Christenson, N. K. Lany, A. M. Socci, et al., “Long-term integrated studies show complex and surprising effects of climate change in northern hardwood forests,” BioScience 62 (12), 1056–1066 (2012).

    Google Scholar 

  31. J. P. Hardy, P. M. Groffman, R. D. Fitzhugh, K. S. Henry, A. T. Welman, J. D. Demers, et al., “Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest,” Biogeochemistry 56 (2), 151–174 (2001).

    Google Scholar 

  32. H. A. L. Henry, “Climate change and soil freezing dynamics: historical trends and projected changes,” Clim. Change 87 (3–4), 421–434 (2008).

    Google Scholar 

  33. A. V. Ivanov, M. Braun, and V. A. Tataurov, “Seasonal and daily dynamics of the CO2 emission from soils of Pinus koraiensis forests in the south of the Sikhote-Alin Range,” Eurasian Soil Sci. 51, 290–295 (2018).

    Google Scholar 

  34. D. Ivanov, F. Tatarinov, and J. Kurbatova, “Soil respiration in paludified forests of European Russia,” J. For. Res., (2019). https://doi.org/10.1007/s11676-019-00963-4

  35. I. A. Janssens and K. Pilegaard, “Large seasonal changes in Q 10 of soil respiration in a beech forest,” Global Change Biol. 9 (6), 911–918 (2003).

    Google Scholar 

  36. K. Jylhä, S. Fronzek, H. Tuomenvirta, T. R. Carter, and K. Ruosteenoja, “Changes in frost, snow and Baltic Sea ice by the end of the twenty-first century based on climate model projections for Europe,” Clim. Change 86 (3–4), 441–462 (2008).

    Google Scholar 

  37. D. V. Karelin, S. V. Goryachkin, A. V. Kudikov, V. O. Lopes de Gerenyu, V. N. Lunin, A. V. Dolgikh, and D. I. Lyuri, “Changes in carbon pool and CO2 emission in the course of postagrogenic succession on gray soils (Luvic Phaeozems) in European Russia,” Eurasian Soil Sci. 50, 559–572 (2017).

    Google Scholar 

  38. D. V. Karelin, D. G. Zamolodchikov, V. V. Kaganov, A. V. Pochikalov, and M. L. Gitarskii, “Microbial and root components of respiration of sod-podzolic soils in boreal forest,” Contemp. Probl. Ecol. 10, 717–727 (2017).

    Google Scholar 

  39. J. Kreyling and H. Henry, “Vanishing winters in Germany: soil frost dynamics and snow cover trends, and ecological implications,” Clim. Res. 46 (3), 269–276 (2011).

    Google Scholar 

  40. V. N. Kudeyarov, “Soil respiration and biogenic carbon dioxide sink in the territory of Russia: an analytical review,” Eurasian Soil Sci. 51, 599–612 (2018).

    Google Scholar 

  41. V. N. Kudeyarov and I. N. Kurganova, “Respiration of Russian soils: database analysis, long-term monitoring, and general estimates,” Eurasian Soil Sci. 38, 983–992 (2005).

    Google Scholar 

  42. J. Kurbatova, F. Tatarinov, A. Molchanov, A. Varlagin, V. Avilov, D. Kozlov, D. Ivanov, and R. Valentini, “Partitioning of ecosystem respiration in a paludified shallow-peat spruce forest in the southern taiga of European Russia,” Environ. Res. Lett. 8 (4), 045028 (2013).

    Google Scholar 

  43. I. Kurganova, V. Lopes de Gerenyu, D. Khoroshaev, and E. Blagodatskaya, “Effect of snowpack pattern on cold-season CO2 efflux from soils under temperate continental climate,” Geoderma 304, 28–39 (2017).

    Google Scholar 

  44. I. N. Kurganova, L. N. Rozanova, T. N. Myakshina, and V. N. Kudeyarov, “Monitoring of CO2 emission from soils of different ecosystems in southern part of Moscow region: data base analyses of long-term field observations,” Eurasian Soil Sci. 37, 74–78 (2004).

    Google Scholar 

  45. I. N. Kurganova, V. O. Lopes de Gerenyu, T. N. Myakshina, D. V. Sapronov, and V. N. Kudeyarov, “CO2 emission from soils of various ecosystems of the southern taiga zone: data analysis of continuous 12-year monitoring,” Dokl. Biol. Sci. 436, 56–58 (2011).

    Google Scholar 

  46. I. N. Kurganova, V. O. Lopes de Gerenyu, A. S. Petrov, T. N. Myakshina, D. V. Sapronov, V. A. Ableeva, and V. N. Kudeyarov, “Effect of the observed climate changes and extreme weather phenomena on the emission component of the carbon cycle in different ecosystems of the southern taiga zone,” Dokl. Biol. Sci. 441, 412–416 (2011).

    Google Scholar 

  47. I. N. Kurganova, V. O. Lopes de Gerenyu, J. F. Gallardo Lancho, and P. T. Oehm, “Evaluation of the rates of soil organic matter mineralization in forest ecosystems of temperate continental, Mediterranean, and tropical monsoon climates,” Eurasian Soil Sci. 45, 68–79 (2012).

    Google Scholar 

  48. I. N. Kurganova, V. O. Lopes de Gerenyu, T. N. Myakshina, D. V. Sapronov, I. Yu. Savin, and E. V. Shorohova, “Carbon balance in forest ecosystems of southern part of Moscow region under a rising aridity of climate,” Contemp. Probl. Ecol. 10, 748–760 (2017).

    Google Scholar 

  49. I. N. Kurganova and V. N. Kudeyarov, “Ecosystems of Russia and global carbon budget,” Sci. Russ., No. 5, 25–32 (2012).

  50. I. N. Kurganova and V. O. Lopes de Gerenyu, “Contribution of abiotic factors to CO2 emission from soils in the freeze–thaw cycles,” Eurasian Soil Sci. 48, 1009–1015 (2015).

    Google Scholar 

  51. A. A. Larionova, I. N. Kurganova, V. O. Lopes de Gerenyu, B. N. Zolotareva, I. V. Yevdokimov, and V. N. Kudeyarov, “Carbon dioxide emissions from agrogray soils under climate changes,” Eurasian Soil Sci. 43, 168–176 (2010).

    Google Scholar 

  52. V. O. Lopes de Gerenyu, I. N. Kurganova, L. N. Rozanova, and V. N. Kudeyarov, “Annual emission of carbon dioxide from soils of the southern taiga soils of Russia,” Eurasian Soil Sci. 34, 931–944 (2001).

    Google Scholar 

  53. V. O. Lopes de Gerenyu, I. N. Kurganova, and D. A. Khoroshaev, “The effect of contrasting moistening regimes on CO2 emission from the gray forest soil under a grass vegetation and bare fallow,” Eurasian Soil Sci. 51, 1200–1213 (2018).

    Google Scholar 

  54. N. Meyer, G. Welp, and W. Amelung, “The temperature sensitivity (Q 10) of soil respiration: controlling factors and spatial prediction at regional scale based on environmental soil classes,” Global Biogeochem. Cycles 32 (2), 306–323 (2018).

    Google Scholar 

  55. A. F. Osipov, “Carbon emission from the soil surface in a mature blueberry pine forest of the middle taiga (Republic of Komi),” Eurasian Soil Sci. 49, 926–933 (2016).

    Google Scholar 

  56. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

    Google Scholar 

  57. J. W. Raich and P. S. Potter, “Global patterns of carbon dioxide emissions from soils,” Global Biogeochem. Cycles 9 (1), 23–36 (1995).

    Google Scholar 

  58. J. W. Raich, P. S. Potter, and D. Bhagawati, “Interannual variability in global soil respiration, 1980–1994,” Global Change Biol. 8 (8), 800–812 (2002).

    Google Scholar 

  59. J. W. Raich and W. H. Schlesinger, “The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate,” Tellus B 44 (2), 81–99 (1992).

    Google Scholar 

  60. M. Reichstein and P. Beer, “Soil respiration across scales: The importance of a model–data integration framework for data interpretation,” J. Plant Nutr. Soil Sci. 171 (3), 344–354 (2008).

    Google Scholar 

  61. W. H. Schlesinger and J. A. Andrews, “Soil respiration and global carbon cycle,” Biogeochemistry 48 (1), 7–20 (2000).

    Google Scholar 

  62. S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. P. Doney, H. Graven, P. Heinze, et al., “Recent trends and drivers of regional sources and sinks of carbon dioxide,” Biogeosciences 12 (3), 653–679 (2015).

    Google Scholar 

  63. M. O. Tarkhov, G. V. Matyshak, I. M. Ryzhova, O. Yu. Goncharova, A. A. Bobrik, D. G. Petrov, and N. M. Petrzhik, “Temperature sensitivity of soil respiration in Palsa peatlands of the north of Western Siberia,” Eurasian Soil Sci. 52, 945–953 (2019).

    Google Scholar 

  64. N. N. Vygodskaya, A. V. Varlagin, Yu. A. Kurbatova, A. V. Ol’chev, O. I. Panferov, F. A. Tatarinov, and N. V. Shalukhina, “Response of taiga ecosystems to extreme weather conditions and climate anomalies,” Dokl. Biol. Sci. 429, 571–574 (2009).

    Google Scholar 

  65. W. Wang, S. Peng, T. Wang, and J. Fang, “Winter soil CO2 efflux and its contribution to annual soil respiration in different ecosystems of a forest-steppe ecotone, north China,” Soil Biol. Biochem. 42 (3), 451–458 (2010).

    Google Scholar 

  66. M. Xu and H. Shang, “Contribution of soil respiration to the global carbon equation,” J. Plant Physiol. 203, 16–28 (2016).

    Google Scholar 

  67. D. G. Zamolodchikov and D. V. Karelin, “An empirical model of carbon fluxes in Russian tundra,” Global Change Biol. 7 (2), 147–161 (2001).

    Google Scholar 

  68. Z. Zhou, M. Xu, F. Kang, and O. J. Sun, “Maximum temperature accounts for annual soil CO2 efflux in temperate forests of Northern China,” Sci. Rep. 5 (1), 12142 (2015).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the station of the background monitoring (Danki village, Serpukhov raion, Moscow oblast, Russia) for kindly provided data on meteorological observations.

Funding

The work was performed under the state budget project “The Study of Soil Precursors, Sources, and Sinks of Greenhouse Gases with regard to Climate Changes” (no. AAAA-A18-118013190177-9) with the field studies supported by the Presidium of the Russian Academy of Sciences under program no. 51 “Climate Changes: Causes, Risks, Consequences, and Problems in Adaptation and Regulation” (no. AAAA-A18-118013190179-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Kurganova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by G. Chirikova

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurganova, I.N., Lopes de Gerenyu, V.O., Khoroshaev, D.A. et al. Analysis of the Long-Term Soil Respiration Dynamics in the Forest and Meadow Cenoses of the Prioksko-Terrasny Biosphere Reserve in the Perspective of Current Climate Trends. Eurasian Soil Sc. 53, 1421–1436 (2020). https://doi.org/10.1134/S1064229320100117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320100117

Keywords:

Navigation