Skip to main content
Log in

Stabilization Mechanisms of Decomposition Products of Plant Residues by Density Fractions of Loam

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The distribution of decomposition products of corn and clover residues by density fractions of noncalcareous mantle loam was studied under controlled conditions. Two light (<1.4 g/cm3 (LF-1) and 1.4–2.2 g/cm3 (LF-2)) and heavy (>2.2 g/cm3 (HF)) fractions were isolated using sodium polytungstate. The LF-1 mainly consisted of incompletely decomposed plant residues; the LF-2, of their decomposition products bound with clay minerals (kaolinite, illite, smectites); and the HF, of the organic matter discretely sorbed on the surface of large grains of quartz and feldspars. It was demonstrated that during stabilization of newly formed organic matter (OM) by different density fractions, they are separated as a result of selective specific adsorption. In this case, the LF-2 is enriched in compounds that do not contain nitrogen, whereas the HF is enriched in nitrogen-containing compounds, including those of microbial nature. As a result, the C/N ratio decreases in the series: LF-1 > LF-2 > HF. The sizes of free and bound to mineral particles organic matter pools were calculated, and a scheme describing the mechanisms of stabilization of decomposition products of plant residues by organo-mineral fractions of different densities was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. L. N. Aleksandrova, Soil Organic Matter and the Processes of Its Transformation (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  2. Z. S. Artemyeva, Organic Matter and Granulometric System of Soil (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  3. Z. S. Artemyeva and N. P. Kirillova, “Role of the products of organo-mineral interaction in aggregation and humus formation in the major types of soils in the center of the Russian Plain,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 90, 73–95 (2017). https://doi.org/10.19047/0136-1694-2017-90-73-95

    Article  Google Scholar 

  4. A. A. Dymov, E. Yu. Milanovskii, and V. A. Kholodov, “Composition and hydrophobic properties of organic matter in the densimetric fractions of soils from the Subpolar Urals,” Eurasian Soil Sci. 48, 1212–1221 (2015). https://doi.org/10.1134/S1064229315110058

    Article  Google Scholar 

  5. A. A. Dymov and E. N. Mikhailova, “Properties of forest and postagrogenic soils developing from sandy and loamy deposits in the Komi Republic,” Izv. Komi Nauchn. Tsentra, Ural. Otd. Ross. Akad. Nauk, No. 3 (31), 24–33 (2017).

    Google Scholar 

  6. A. A. Larionova, B. N. Zolotareva, A. K. Kvitkina, I. V. Evdokimov, S. S. Bykhovets, A. F. Stulin, Ya. V. Kuzyakov, and V. N. Kudeyarov, “Assessing the stability of soil organic matter by fractionation and 13C isotope techniques,” Eurasian Soil Sci. 48, 157–168 (2015). https://doi.org/10.1134/S1064229315020076

    Article  Google Scholar 

  7. E. D. Lodygin, V. A. Beznosikov, and S. N. Chukov, Structural and Functional Parameters of Humic Substances in Podzolic and Bog-Podzolic Soils (Nauka, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  8. E. G. Morgun and M. I. Makarov, “Use of sodium polytungstate in the granulo-densimetric fractionation of soil material,” Eurasian Soil Sci. 44, 394–398 (2011). https://doi.org/10.1134/S1064229311040077

    Article  Google Scholar 

  9. D. S. Orlov, Chemistry of Soils (Moscow State University, Moscow, 1992) [in Russian].

    Google Scholar 

  10. D. L. Pinskiy, Ion Exchange in Soils (Pushchino, 1997) [in Russian].

    Google Scholar 

  11. D. L. Pinskiy, A. N. Maltseva, B. P. Zolotareva, and E. D. Dmitrieva, “Transformation kinetics of corn and clover residues in mineral substrates of different composition,” Eurasian Soil Sci. 50, 681–687 (2017). https://doi.org/10.1134/S1064229317060096

  12. V. M. Semenov and B. M. Kogut, Soil Organic Matter (GEOS, Moscow, 2015) [in Russian].

  13. T. A. Sokolova and S. Ya. Trofimov, Sorption Properties of Soils. Adsorption. Cation Exchange (Grif i K, Tula, 2009) [in Russian].

    Google Scholar 

  14. L. S. Travnikova, Organomineral Interactions: Role in Pedogenesis, Fertility, and Soil Tolerance to Degradation (Dokuchaev Soil Science Inst., Moscow, 2012) [in Russian].

    Google Scholar 

  15. S. Ya. Trofimov, T. A. Sokolova, T. Ya. Dronova, and I. I. Tolpeshta, Mineral Components of Soils (Grif i K, Tula, 2007) [in Russian].

    Google Scholar 

  16. S. N. Chukov, Structural and Functional Parameters of Soil Organic Matter (St. Petersburg State Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  17. S. N. Chukov, E. D. Lodygin, and E. V. Abakumov, “Application of 13C NMR spectroscopy to the study of soil organic matter: a review of publications,” Eurasian Soil Sci. 51, 889–890 (2018). https://doi.org/10.1134/S1064229318080021

    Article  Google Scholar 

  18. M. Sh. Shaimukhametov, N. A. Titova, L. S. Travnikova, and E. M. Labenets, “Use of physical fractionation methods to characterize soil organic matter,” Pochvovedenie, No. 8, 131–141 (1984).

    Google Scholar 

  19. W. T. Baisden, R. Amundson, A. C. Cook, and D. L. Brenner, “Turnover and storage of C and N in five density fractions from California annual grassland surface soils,” Global Biogeochem. Cycles. 16 (4), 64‑1–64-16 (2002). https://doi.org/10.1029/2001gb001822

  20. J. A. Baldock and J. O. Skjemstad, “Role of the soil matrix and minerals in protecting natural organic materials against biological attack,” Org. Geochem. 31, 697–710 (2000). https://doi.org/10.1016/S0146-6380(00)00049-8

    Article  Google Scholar 

  21. J. A. Baldock, J. M. Oades, P. N. Nelson, T. M. Skene, A. Golchin, and P. Clarke, “Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy,” Aust. J. Soil Res. 35, 1061–1083 (1997). https://doi.org/10.1071/S97004

    Article  Google Scholar 

  22. C. Cerli, L. Celi, K. Kalbitz, G. Guggenberger, and K. Kaiser, “Separation of light and heavy organic matter fractions in soil—Testing for proper density cut-off and dispersion level,” Geoderma. 170, 403–416 (2012). https://doi.org/10.1016/j.geoderma.2011.10.009

    Article  Google Scholar 

  23. B. T. Christensen, “Physical fractionation of soil and organic matter in primary particle size and density separates,” in Advances in Soil Science, Ed. by B. A. Stewart (Springer-Verlag, New York, 1992), Vol. 20, pp. 1–90. https://doi.org/10.1007/978-1-4612-2930-8_1

  24. P. Conte, C. De Pasquale, E. H. Novotny, G. Caponetto, V. A. Laudicina, M. Ciofalo, M. Panno, E. Palazzolo, L. Badalucco, and G. Alonzo, “CPMAS 13C NMR characterization of leaves and litters from the reafforestated area of Mustigarufi in Sicily (Italy),” Open Magn. Reson. J. 3, 89–95 (2010). https://doi.org/10.2174/1874769801003010089

    Article  Google Scholar 

  25. M. F. Cotrufo, J. L. Soong, A. J. Horton, E. E. Campbell, M. L. Haddix, D. H. Wall, and W. J. Parton, “Formation of soil organic matter via biochemical and physical pathways of litter mass loss,” Nat. Geosci. 8, 776–779 (2015). https://doi.org/10.1038/ngeo2520

    Article  Google Scholar 

  26. S. E. Crow, C. W. Swanston, K. Lajtha, J. R. Brooks, and H. Keirstead, “Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context,” Biogeochemistry 85 (1), 69–90 (2007). https://doi.org/10.1007/s10533-007-9100-8

    Article  Google Scholar 

  27. A. Diochon, A. W. Gillespie, B. H. Ellert, H. H. Janzen, and E. G. Gregorich, “Recovery and dynamics of decomposing plant residue in soil: an evaluation of three fractionation methods,” Eur. J. Soil Sci. 67 (2), 196–205 (2016). https://doi.org/10.1111/ejss.12316

    Article  Google Scholar 

  28. A. Golchin, J. A. Baldock, and J. M. Oades, “A model linking organic matter decomposition, chemistry, and aggregate dynamics,” in Soil Processes and The Carbon Cycle, Ed. by R. Lal, et al. (CRC Press, Boca Raton, FL, 1998), pp. 245–266. https://doi.org/10.1201/9780203739273

  29. A. Golchin, J. M. Oades, J. O. Skjemstad, and P. Clarke, “Study of free and occluded particulate organic matter in soils by solid-state 13C CP/MAS NMR spectroscopy and scanning electron microscopy,” Aust. J. Soil Res. 32 (2), 285–309 (1994). https://doi.org/10.1071/SR9940285

    Article  Google Scholar 

  30. M. Griepentrog and M. W. Schmidt, “Discrepancies in utilization of density fractionation along with ultrasonic dispersion to obtain distinct pools of soil organic matter,” J. Plant Nutr. Soil Sci. 176 (4), 500–504 (2013). https://doi.org/10.1002/jpln.201200469

    Article  Google Scholar 

  31. E. Grüneberg, I. Schöning, D. Hessenmöller, E.-D. Schulze, and W. W. Weisser, “Organic layer and clay content control soil organic carbon stocks in density fractions of differently managed German beech forests,” For. Ecol. Manage. 303, 1–10 (2013). https://doi.org/10.1016/j.foreco.2013.03.014

    Article  Google Scholar 

  32. P.-J. Hatton, S. Bodé, N. Angeli, P. Boeckx, B. Zeller, S. Boiry, L. Gelhaye, and D. Derrien, “Assimilation and accumulation of C by fungi and bacteria attached to soil density fractions,” Soil Biol. Biochem. 79, 132–139 (2014). https://doi.org/10.1016/j.soilbio.2014.09.013

    Article  Google Scholar 

  33. P.-J. Hatton, M. Kleber, B. Zeller, C. Moni, A. F. Plante, K. Townsend, L. Gelhaye, K. Lajtha, and D. Derrien, “Transfer of litter-derived N to soil mineral–organic associations: evidence from decadal 15N tracer experiments,” Org. Geochem. 42 (12), 1489–1501 (2012). https://doi.org/10.1016/j.orggeochem.2011.05.002

    Article  Google Scholar 

  34. C. E. Hicks Pries, J. A. Bird, C. Castanha, P.-J. Hatton, and M. S. Torn, “Long-term decomposition: the influence of litter type and soil horizon on retention of plant carbon and nitrogen in soils,” Biogeochemistry 134 (1–2), 5–16 (2017). https://doi.org/10.1007/s10533-017-0345-6

    Article  Google Scholar 

  35. E. Jones and B. Singh, “Organo-mineral interactions in contrasting soils under natural vegetation,” Front. Environ. Sci. 2, 1–15 (2014). https://doi.org/10.3389/fenvs.2014.00002

    Article  Google Scholar 

  36. K. Kaiser and G. Guggenberger, “Mineral surfaces and soil organic matter,” Eur. J. Soil Sci. 54 (4), 219–236 (2003). https://doi.org/10.1046/j.1365-2389.2003.00544.x

    Article  Google Scholar 

  37. M. Kleber, K. Eusterhues, M. Keiluweit, C. Mikutta, R. Mikutta, and P. S. Nico, Mineral–organic associations: formation, properties, and relevance in soil environments,” Adv. Agron. 130, 1–140 (2015). https://doi.org/10.1016/bs.agron.2014.10.005

    Article  Google Scholar 

  38. H. Knicker and H. D. Lüdemann, “N-15 and C-13 CPMAS and solution studies of N-15 enriched plant material during 600 days of microbial degradation,” Org. Geochem. 23, 329–341 (1995). https://doi.org/10.1016/0146-6380(95)00007-2

    Article  Google Scholar 

  39. I. Kögel-Knabner, “The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter,” Soil Biol. Biochem. 34, 139–162 (2002). https://doi.org/10.1016/S0038-0717(01)00158-4

    Article  Google Scholar 

  40. M. Ludwig, J. Achtenhagen, A. Miltner, K.-U. Eckhardt, P. Leinweber, C. Emmerling, and S. Thiele-Bruhn, “Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils,” Soil Biol. Biochem. 81, 311–322 (2015). https://doi.org/10.1016/j.soilbio.2014.12.002

    Article  Google Scholar 

  41. M. Lukach, R. Simmons, M. Johnson, C. Catricala, and M. Monte, Standard Operating Procedure for the Physical Fractionation Procedure to Determine Soil Organic Matter Quality (US Environmental Protection Agency, Washington, DC, 2003).

    Google Scholar 

  42. L. M. Mayer, L. L. Schick, K. R. Hardy, R. Wagai, and J. McCarthy, “Organic matter in small mesopores in sediments and soils,” Geochim. Cosmochim. Acta 68 (19), 3863–3872 (2004). https://doi.org/10.1016/j.gca.2004.03.019

    Article  Google Scholar 

  43. E. Mitchell, C. Scheer, D. Rowlings, R. T. Conant, M. F. Cotrufo, and P. Grace, “Amount and incorporation of plant residue inputs modify residue stabilization dynamics in soil organic matter fractions,” Agric., Ecosyst. Environ. 256, 82–91 (2018). https://doi.org/10.1016/j.agee.2017.12.006

    Article  Google Scholar 

  44. C. Moni, D. Derrien, P.-J. Hatton, B. Zeller, and M. Kleber, “Density fractions versus size separates: does physical fractionation isolate functional soil compartments?” Biogeosciences 9 (12), 5181–5197 (2012). https://doi.org/10.5194/bg-9-5181-2012

    Article  Google Scholar 

  45. C. Plaza, D. Courtier-Murias, J. M. Fernández, A. Polo, and A. J. Simpson, “Physical, chemical, and biochemical mechanisms of soil organic matter stabilization under conservation tillage systems: a central role for microbes and microbial by-products in C sequestration,” Soil Biol. Biochem. 57, 124–134 (2013). https://doi.org/10.1016/j.soilbio.2012.07.026

    Article  Google Scholar 

  46. C. Poeplau, A. Don, J. Six, M. Kaiser, et al., “Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils—A comprehensive method comparison,” Soil Biol. Biochem. 125, 10–26 (2018). https://doi.org/10.1016/j.soilbio.2018.06.025

    Article  Google Scholar 

  47. N. Poirier, S. P. Sohi, J. L. Gaunt, N. Mahieu, E. W. Randall, D. S. Powlson, and R. P. Evershed, “The chemical composition of measurable soil organic matter pools,” Org. Geochem. 36 (8), 1174–1189 (2005). https://doi.org/10.1016/j.orggeochem.2005.03.005

    Article  Google Scholar 

  48. C. Rumpel, A. Rodríguez-Rodríguez, J. A. González-Pérez, C. Arbelo, A. Chabbi, N. Nunan, and F. J. González-Vila, “Contrasting composition of free and mineral-bound organic matter in top- and subsoil horizons of andosols,” Biol. Fertil. Soils. 48 (4), 401–411 (2012). https://doi.org/10.1007/s00374-011-0635-4

    Article  Google Scholar 

  49. M. Schrumpf, K. Kaiser, G. Guggenberger, T. Persson, I. Kogel-Knabner, and E. D. Schulze, “Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals,” Biogeosciences 10, 1675–1691 (2013). https://doi.org/10.5194/bg-10-1675-2013

    Article  Google Scholar 

  50. P. Sollins, C. A. Glassman, E. A. Paul, C. Swanston, K. Lajtha, J. W. Heil, and E. T. Elliott, “Soil carbon and nitrogen: pools and fractions,” in Standard Soil Methods for Long-Term Ecological Research Ed. by G. P. Robertson, (Oxford University Press, Oxford, 1999), pp. 89–105.

    Google Scholar 

  51. P. Sollins, M. Kramer, C. Swanston, K. Lajtha, T. Filley, A. K. Aufdenkampe, R. Wagai, and R. D. Bowden, “Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization,” Biogeochemistry 96 (1–3), 209–231 (2009). https://doi.org/10.1007/s10533-009-9359-z

    Article  Google Scholar 

  52. P. Sollins, C. Swanston, M. Kleber, T. Filley, M. Kramer, S. Crow, B. A. Cadwell, K. Lajtha, and R. Bowden, “Organic C and N stabilization in a forest soil: evidence from sequential density fractionation,” Soil Biol. Biochem. 38 (11), 3313–3324 (2006). https://doi.org/10.1016/j.soilbio.2006.04.014

    Article  Google Scholar 

  53. M. S. Strickland and J. Rousk, “Considering fungal : bacterial dominance in soils–Methods, controls, and ecosystem implications,” Soil Biol. Biochem. 42 (9), 1385–1395 (2010). https://doi.org/10.1016/j.soilbio.2010.05.007

    Article  Google Scholar 

  54. F. Viret and S. Grand, “Combined size and density fractionation of soils for investigations of organo-mineral interactions,” J. Vis. Exp. 144, e58927 (2019). https://doi.org/10.3791/58927

    Article  Google Scholar 

  55. M. von Lutzow, I. Kögel-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner, “SOM fractionation methods: relevance to functional pools and to stabilization mechanisms,” Soil Biol. Biochem. 39, 2183–2207 (2007). https://doi.org/10.1016/j.soilbio.2007.03.007

    Article  Google Scholar 

  56. R. Wagai, M. Kajiura, M. Asano, and S. Hiradate, “Nature of soil organo-mineral assemblage examined by sequential density fractionation with and without sonication: Is allophanic soil different?” Geoderma 241–242, 295–305 (2015). https://doi.org/10.1016/j.geoderma.2014.11.028

    Article  Google Scholar 

  57. R. Wagai, L. M. Mayer, and K. Kitayama, “Nature of the “occluded” low-density fraction in soil organic matter studies: a critical review,” Soil Sci. Plant Nutr. 55 (1), 13–25 (2009). https://doi.org/10.1111/j.1747-0765.2008.00356.x

    Article  Google Scholar 

  58. T. Yamashita, H. Flessa, B. John, M. Helfrich, and B. Ludwig, “Organic matter in density fractions of water-stable aggregates in silty soils: effect of land use,” Soil Biol. Biochem. 38 (11), 3222–3234 (2006). https://doi.org/10.1016/j.soilbio.2006.04.013

    Article  Google Scholar 

  59. S. Yeasmin, B. Singh, C. T. Johnston, and D. L. Sparks, “Organic carbon characteristics in density fractions of soils with contrasting mineralogies,” Geochim. Cosmochim. Acta 218, 215–236 (2017). https://doi.org/10.1016/j.gca.2017.09.007

    Article  Google Scholar 

Download references

Funding

This study was carried out within the framework of state assignment no. AAAA-A18-118013190180-9 and supported by the Russian Foundation for Basic Research, project no. 19-29-05265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Maltseva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Klyueva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltseva, A.N., Pinskiy, D.L. Stabilization Mechanisms of Decomposition Products of Plant Residues by Density Fractions of Loam. Eurasian Soil Sc. 53, 1408–1420 (2020). https://doi.org/10.1134/S1064229320100129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320100129

Keywords:

Navigation