Skip to main content

Advertisement

Log in

China’s agricultural GHG emission efficiency: regional disparity and spatial dynamic evolution

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Improving China’s agricultural greenhouse gases (GHG) emission efficiency has become an important way to cope with climate change in an ecologically—and ethically responsible manner. In this paper, we use a global slacks-based inefficiency model to evaluate the agricultural greenhouse gases (GHG) emission efficiency levels in China during 2000–2015. The regional disparity of China’s GHG emission efficiency is examined by using a Dagum Gini coefficient. A spatial Markov chain technique is also employed to investigate the spatial dynamic evolution of agricultural GHG emission efficiency. The results show that: (1) China’s agricultural GHG emission efficiency increased steadily during the study period; a certain gap in efficiency among provinces and regions also exists. (2) Between-group disparity is the main source of the overall regional disparities in China’s agricultural GHG emission efficiency. The disparities between regions are on the rise, while the disparities within regions are relatively stable. (3) China’s agricultural GHG emission efficiency demonstrates significant spatial dependence. This study provides policy implications for the sustainable development of China’s agricultural sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

source and contribution rate of regional disparity of AGEE

Similar content being viewed by others

Notes

  1. According to the "Opinions of the Central Committee of the Communist Party of China and the State Council on Promoting the Rise of the Central Region" and the "Implementation Opinions of the State Council on Several Policy Measures for the Development of the Western Region", see https://www.stats.gov.cn/ztjc/zthd/sjtjr/dejtjkfr/tjkp/201106/t20110613_71947.htm

  2. Due to the unavailability of Tibet’s historical energy consumption data, Tibet’s data are not included in this article.

  3. According to IPCC 2007, each ton of CO2 contains 0.2727 tons of carbon. The greenhouse effects caused by the emission of 1 ton of CH4 and 1 ton of N2O are equivalent to the emission of 25 tons of CO2 (about 6.8182 tons of carbon) and 298 tons of CO2 (about 81.2727 tons of carbon), respectively

  4. This is the sum of the first row of non-diagonal elements in Table 5.

References

  • Alexiadis, S. (2012). Convergence in agriculture: Evidence from the European regions. Agricultural Economics Review, 11(389-2016–23460), 84–96.

    Google Scholar 

  • Bosker, M. (2009). The spatial evolution of regional GDP disparities in the ‘old’ and the ‘new’ Europe. Papers in Regional Science, 88(1), 3–27.

    Article  Google Scholar 

  • Dagum, C. (1997). A new approach to the decomposition of the gini income inequality ratio. Empirical Economics, 22(4), 515–531.

    Article  Google Scholar 

  • Dubey, A., & Lal, R. (2009). Carbon footprint and sustainability of agricultural production systems in Punjab, India and Ohio, USA. Journal of Crop Improvement, 23(4), 332–350.

    Article  CAS  Google Scholar 

  • Färe, R., Grosskopf, S., & Pasurka, C. A. (2007). Environmental production functions and environmental directional. Energy, 32(7), 1055–1066.

    Article  Google Scholar 

  • Fei, R., & Lin, B. (2017). The integrated efficiency of inputs–outputs and energy—CO2 emissions performance of china’s agricultural sector. Renewable and Sustainable Energy Reviews, 75, 668–676.

    Article  CAS  Google Scholar 

  • Fukuyama, H., & Weber, W. L. (2009). A directional slacks-based measure of technical inefficiency. Socio-Economic Planning Sciences, 43(4), 274–287.

    Article  Google Scholar 

  • Han, H., Ding, T., Nie, L., & Hao, Z. (2020). Agricultural eco-efficiency loss under technology heterogeneity given regional differences in China. Journal of Cleaner Production, 250, 119511.

    Article  Google Scholar 

  • IPCC. (1996). Climate change 1995—impacts, adaptations and mitigation of climate change: scientific-technical analyses. Cambridge: Press CU.

    Google Scholar 

  • IPCC. (2007). Contribution of working group iii to the fourth assessment report of the intergovernmental panel on climate change cambridge. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jiang, J., & Ye, B. (2020). A comparative analysis of Chinese regional climate regulation policy: ETS as an example. Environmental Geochemistry and Health, 42(3), 819–840.

    Article  CAS  Google Scholar 

  • Karkacier, O., Goktolga, Z. G., & Cicek, A. (2006). A regression analysis of the effect of energy use in agriculture. Energy Policy, 34(18), 3796–3800.

    Article  Google Scholar 

  • Kijek, A., Kijek, T., Nowak, A., & Skrzypek, A. (2019). Productivity and its convergence in agriculture in new and old European Union member states. Agricultural Economics, 65(1), 01–09.

    Google Scholar 

  • Lai, Z., Chen, M., & Liu, T. (2020). Changes in and prospects for cultivated land use since the reform and opening up in China. Land Use Policy, 97, 104781.

    Article  Google Scholar 

  • Li, B., Zhang, J. B., & Li, H.-P. (2011). Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in china. China Population Resources & Environment, 13(6), 1300–1304. ((in Chinese)).

    Google Scholar 

  • Lin, B., & Fei, R. (2015a). Analyzing inter-factor substitution and technical progress in the Chinese agricultural sector. European Journal of Agronomy, 66, 54–61.

    Article  Google Scholar 

  • Lin, B., & Fei, R. (2015b). Regional differences of CO2 emissions performance in China’s agricultural sector: A Malmquist index approach. European Journal of Agronomy, 70, 33–40.

    Article  CAS  Google Scholar 

  • Li, H., & Qin, Q. (2019). Challenges for China’s carbon emissions peaking in 2030: A decomposition and decoupling analysis. Journal of Cleaner Production, 207, 857–865.

    Article  Google Scholar 

  • Li, N., Jiang, Y., Mu, H., & Yu, Z. (2018). Efficiency evaluation and improvement potential for the Chinese agricultural sector at the provincial level based on data envelopment analysis (DEA). Energy, 164, 1145–1160.

    Article  Google Scholar 

  • Liu, Y., Lu, S., & Chen, Y. (2013). Spatio-temporal change of urban–rural equalized development patterns in China and its driving factors. Journal of Rural Studies, 32, 320–330.

    Article  CAS  Google Scholar 

  • Liu, Z., Adams, M., Cote, R. P., Geng, Y., Chen, Q., Liu, W., & Yu, X. (2017). Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China. Energy Policy, 102, 88–95.

    Article  CAS  Google Scholar 

  • Lo, A. Y. (2012). Carbon emissions trading in China. Nature Climate Change, 2(11), 765–766.

    Article  Google Scholar 

  • Su, M., Guo, R., & Hong, W. (2019). Institutional transition and implementation path for cultivated land protection in highly urbanized regions: A case study of Shenzhen, China. Land Use Policy, 81, 493–501.

    Article  Google Scholar 

  • Mi, Z., Wei, Y. M., Wang, B., Meng, J., Liu, Z., Shan, Y., & Guan, D. (2017). Socioeconomic impact assessment of China’s CO2 emissions peak prior to 2030. Journal of Cleaner production, 142, 2227–2236.

    Article  Google Scholar 

  • National Bureau of Statistics of China (NBSC), 2001–2016. China Energy Statistical Yearbook. NBSC, Beijing, China Statistics (in Chinese).

  • National Bureau of Statistics of China (NBSC), 2001–2016. China Rural Statistical Yearbook. NBSC, Beijing, China Statistics (in Chinese).

  • National Bureau of Statistics of China (NBSC), 2001–2016. China Statistics Yearbook. NBSC, Beijing, China Statistics (in Chinese).

  • Oh, D. H. (2010). A global Malmquist-Luenberger productivity index. Journal of Productivity Analysis, 34(3), 183–197.

    Article  Google Scholar 

  • Pang, J., Chen, X., Zhang, Z., & Li, H. (2016). Measuring eco-efficiency of agriculture in China. Sustainability, 8(4), 398.

    Article  Google Scholar 

  • Pu, Y. X., Ma, R. H., Ge, Y., & Huang, X. Y. (2005). Spatial-temporal dynamics of regional convergence at county level in Jiangsu. Chinese Geographical Science., 15(2), 113–119.

    Article  Google Scholar 

  • Qian, Y., Song, K., Hu, T., & Ying, T. (2018). Environmental status of livestock and poultry sectors in China under current transformation stage. Science of the Total Environment, 622, 702–709.

    Article  CAS  Google Scholar 

  • Qin, Q., Li, X., Li, L., Zhen, W., & Wei, Y. M. (2017). Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas. Applied Energy, 185, 604–614.

    Article  CAS  Google Scholar 

  • Rey, S. J. (2001). Spatial empirics for economic growth and convergence. Geographical Analysis, 33(3), 195–214.

    Article  Google Scholar 

  • Schneider, U. A., McCarl, B. A., & Schmid, E. (2007). Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry. Agricultural Systems, 94(2), 128–140.

    Article  Google Scholar 

  • Tochkov, K., & Yu, W. (2013). Sectoral Productivity and Regional Disparities in China, 1978–2006. Comparative Economic Studies, 55(4), 582–605.

    Article  Google Scholar 

  • Toma, P., Miglietta, P. P., Zurlini, G., Valente, D., & Petrosillo, I. (2017). A non-parametric bootstrap-data envelopment analysis approach for environmental policy planning and management of agricultural efficiency in EU countries. Ecological Indicators, 83, 132–143.

    Article  Google Scholar 

  • Tian, Y., Zhang, J. B., & He, Y. (2014). Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in china. Journal of Integrative Agriculture, 13(6), 1393–1403.

    Article  Google Scholar 

  • Tian, Y., Zhang, J., & Chen, Q. (2015). Distributional dynamic and trend evolution of China’s agricultural carbon emissions–an analysis on panel data of 31 provinces from 2002 to 2011. Chinese Journal of Population Resources and Environment, 13(3), 206–214.

    Article  Google Scholar 

  • Wang, Z., & Feng, C. (2015). Sources of production inefficiency and productivity growth in China: A global data envelopment analysis. Energy Economics, 49, 380–389.

    Article  Google Scholar 

  • Wu, J., Ge, Z., Han, S., Xing, L., Zhu, M., Zhang, J., & Liu, J. (2020). Impacts of agricultural industrial agglomeration on China’s agricultural energy efficiency: A spatial econometrics analysis. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.121011

    Article  Google Scholar 

  • Wu, Y. R. (2013). China’s Capital Stock Series by Region and Sector. University of Western Australia 2013 (Discussion Paper, No. 0902).

  • Wang, Y., Duan, F., Ma, X., & He, L. (2019). Carbon emissions efficiency in China: Key facts from regional and industrial sector. Journal of Cleaner Production, 206, 850–869.

    Article  Google Scholar 

  • Yan, D., Ren, X., Kong, Y., Ye, B., & Liao, Z. (2020). The heterogeneous effects of socioeconomic determinants on PM2. 5 concentrations using a two-step panel quantile regression. Applied Energy. https://doi.org/10.1016/j.apenergy.2020.115246

    Article  Google Scholar 

  • Yang, Z., Wang, D., Du, T., Zhang, A., & Zhou, Y. (2018). Total-factor energy efficiency in China’s agricultural sector: Trends, disparities and potentials. Energies, 11(4), 853.

    Article  Google Scholar 

  • Zhang, N., Zhang, G., & Li, Y. (2019). Does major agriculture production zone have higher carbon efficiency and abatement cost under climate change mitigation? Ecological Indicators, 105, 376–385.

    Article  Google Scholar 

  • Zhen, W., Qin, Q., Kuang, Y., & Huang, N. (2017). Investigating low-carbon crop production in Guangdong Province, China (1993–2013): A decoupling and decomposition analysis. Journal of Cleaner Production, 146, 63–70.

    Article  Google Scholar 

  • Zhen, W., Qin, Q., & Wei, Y. M. (2017). Spatio-temporal patterns of energy consumption-related GHG emissions in China’s crop production systems. Energy Policy, 104, 274–284.

    Article  CAS  Google Scholar 

  • Zou, X., Li, K., Cremades, R., Gao, Q., Wan, Y., & Qin, X. (2015). Greenhouse gas emissions from agricultural irrigation in China. Mitigation and Adaptation Strategies for Global Change, 20(2), 295–315.

    Article  Google Scholar 

  • Zhou, P., Ang, B. W., & Poh, K. L. (2008). Measuring environmental performance under different environmental DEA technologies. Energy Economics, 30(1), 1–14.

    Article  CAS  Google Scholar 

  • Zhou, Y., Jiang, J., Ye, B., Zhang, Y., & Yan, J. (2020). Addressing climate change through a market mechanism: A comparative study of the pilot emission trading schemes in China. Environmental Geochemistry and Health, 42(3), 745–767.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study is partly supported by National Natural Science Foundation of China (71871146, 71602038) and the Ministry of Education of Humanities and Social Science project of China (Nos. 18YJA630090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiude Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Q., Yan, H., Liu, J. et al. China’s agricultural GHG emission efficiency: regional disparity and spatial dynamic evolution. Environ Geochem Health 44, 2863–2879 (2022). https://doi.org/10.1007/s10653-020-00744-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00744-7

Keywords

Navigation