Skip to main content

Advertisement

Log in

Characterization of ambient PM1 at a suburban site of Agra: chemical composition, sources, health risk and potential cytotoxicity

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The present study was conducted at a University campus of Agra to determine concentrations of crustal and trace elements in submicron mode (PM1) particles to reveal sources and detrimental effects of PM1-bound metals (Cr, Cd, Mn, Zn, As, Co, Pb, Cu and Ni) in samples collected in the foggy (1 December 2016–17 January 2017) and non-foggy periods (1 April 2016–30 June 2016). Samples were collected twice a week on preweighed quartz fibre filters (QM-A 47 mm) for 24 h using Envirotech APM 577 (flow rate 10 l min−1). Mass concentration of PM1 was 135.0 ± 28.2 and 54.0 ± 18.5 µg/m3 during foggy and non-foggy period, respectively; crustal and trace elements were 13 and 4% during foggy and 11 and 3% in the non-foggy period. Source identification by PCA (principal component analysis) suggested that biomass burning and coal combustion was the prominent sources in foggy period followed by resuspended soil dust, industrial and vehicular emission, whereas in non-foggy period resuspended soil dust was dominant followed by biomass burning and coal combustion, industrial and vehicular emissions. In both episodes, Mn has the highest Hq (hazard quotient) value and Cr has the highest IlcR (Incremental Lifetime Cancer Risk) value for both adults and children. In vitro cytotoxicity impact on macrophage (J774) cells was also tested using MTT assay which revealed decreasing cell viability with increasing particle mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.1

Source contributions to PM1 during foggy period

Fig. 6.2

Source contributions to PM1 during non-foggy period

Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdullah, M. Z., & Alias, N. A. (2018). Variation of PM10 and heavy metals concentration of sub-urban area caused by haze episode. Malaysian Journal of Analytical Sciences, 22(3), 508–513.

    Google Scholar 

  • Agarwal, A., Mangal, A., Satsangi, A., Lakhani, A., & Kumari, K. M. (2017). Characterization, sources and health risk analysis of PM2.5 bound metals during foggy and non-foggy days in sub-urban atmosphere of Agra. Atmospheric Research, 197, 121–131.

    CAS  Google Scholar 

  • Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., et al. (2011). Chemical characterisation and source apportionment of PM2. 5 and PM10 at rural, urban and traffic sites in Navarra North of Spain. Atmospheric Research, 102((1-2)), 191–205.

    CAS  Google Scholar 

  • Alessandria, L., Schilirò, T., Degan, R., Traversi, D., & Gilli, G. (2014). Cytotoxic response in human lung epithelial cells and ion characteristics of urban-air particles from Torino, a northern Italian city. Environmental Science and Pollution Research, 21(8), 5554–5564.

    CAS  Google Scholar 

  • Allen, J. L., Liu, X., Pelkowski, S., Palmer, B., Conrad, K., Oberdörster, G., et al. (2014). Early postnatal exposure to ultrafine particulate matter air pollution: Persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice. Environmental health perspectives, 122(9), 939–945.

    Google Scholar 

  • Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., & Trancoso, M. A. (2006). Approaching PM2.5 and PM2.5-10source apportionment by mass balance analysis, principal component analysis and particle size distribution. Science of the Total Environment, 368((2-3)), 663–674.

    CAS  Google Scholar 

  • Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., et al. (2009). Quantifying road dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmospheric Environment, 43(17), 2770–2780.

    CAS  Google Scholar 

  • Bari, M. A., & Kindzierski, W. B. (2018). Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Science of the Total Environment, 631, 627–640.

    Google Scholar 

  • Bollati, V., Marinelli, B., Apostoli, P., Bonzini, M., Nordio, F., Hoxha, M., et al. (2010). Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environmental health perspectives, 118(6), 763–768.

    CAS  Google Scholar 

  • Caggiano, R., Macchiato, M., & Trippetta, S. (2010). Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin. Science of the Total Environment, 408(4), 884–895.

    CAS  Google Scholar 

  • Caggiano, R., Sabia, S., & Speranza, A. (2019). Trace elements and human health risks assessment of finer aerosol atmospheric particles (PM1). Environmental Science and Pollution Research, 26, 36423–36433.

    CAS  Google Scholar 

  • Chakraborty, A., & Gupta, T. (2010). Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region India. Aerosol and Air Quality Research, 10(5), 433–445.

    CAS  Google Scholar 

  • Chen, J., Tan, M., Li, Y., Zheng, J., Zhang, Y., Shan, Z., et al. (2008). Characteristics of trace elements and lead isotope ratios in PM2.5 from four sites in Shanghai. Journal of Hazardous Materials, 156(1), 36–43.

    CAS  Google Scholar 

  • Chenery, S. R., Sarkar, S. K., Chatterjee, M., Marriott, A. L., & Watts, M. J. (2020). Heavy metals in urban road dusts from Kolkata and Bengaluru, India: implications for human health. Environmental Geochemistry and Health, 42(9), 2627–2643.

    CAS  Google Scholar 

  • Cheng, Y., Zou, S. C., Lee, S. C., Chow, J. C., Ho, K. F., Watson, J. G., et al. (2011). Characteristics and source apportionment of PM1 emissions at a roadside station. Journal of Hazardous Materials, 195, 82–91.

    CAS  Google Scholar 

  • Crespi, A., Bernardoni, V., Calzolai, G., Lucarelli, F., Nava, S., Valli, G., et al. (2016). Implementing constrained multi-time approach with bootstrap analysis in ME-2: An application to PM2.5 data from Florence (Italy). Science of the Total Environment, 541, 502–511.

    CAS  Google Scholar 

  • Dallarosa, J., Teixeira, E. C., Meira, L., & Wiegand, F. (2008). Study of the chemical elements and polycyclic aromatic hydrocarbons in atmospheric particles of PM10 and PM2.5 in the urban and rural areas of South Brazil. Atmospheric Research, 89(1–2), 76–92.

    CAS  Google Scholar 

  • Deka, P., Bhuyan, P., Daimari, R., Sarma, K. P., & Hoque, R. R. (2016). Metallic species in PM10 and source apportionment using PCA-MLR modeling over mid-Brahmaputra Valley. Arabian Journal of Geosciences, 9(5), 335.

    Google Scholar 

  • Deng, X., Zhang, F., Rui, W., Long, F., Wang, L., Feng, Z., et al. (2013). PM induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicology in vitro, 27(6), 1762–1770.

    CAS  Google Scholar 

  • Diapouli, E., Manousakas, M., Vratolis, S., Vasilatou, V., Maggos, T., Saraga, D., et al. (2017). Evolution of air pollution source contributions over one decade, derived by PM10 and PM2.5 source apportionment in two metropolitan urban areas in Greece. Atmospheric Environment, 164, 416–430.

    CAS  Google Scholar 

  • Draxler, R.R., Rolph, G.D. (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website (https://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring.

  • Duan, J., & Tan, J. (2013). Atmospheric heavy metals and arsenic in China: situation, sources and control policies. Atmospheric Environment, 74, 93–101.

    CAS  Google Scholar 

  • Dumka, U. C., Tiwari, S., Kaskaoutis, D. G., Soni, V. K., Safai, P. D., & Attri, S. D. (2019). Aerosol and pollutant characteristics in Delhi during a winter research campaign. Environmental Science and Pollution Research, 26(4), 3771–3794.

    CAS  Google Scholar 

  • Enamorado-Báez, S. M., Gómez-Guzmán, J. M., Chamizo, E., & Abril, J. M. (2015). Levels of 25 trace elements in high-volume air filter samples from Seville (2001–2002): Sources, enrichment factors and temporal variations. Atmospheric Research, 155, 118–129.

    Google Scholar 

  • Gangwar, J. N., Gupta, T., & Agarwal, A. K. (2012). Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine. Atmospheric Environment, 46, 472–481.

    CAS  Google Scholar 

  • Gao, Y., Guo, X., Li, C., Ding, H., Tang, L., & Ji, H. (2015). Characteristics of PM2.5 in Miyun, the northeastern suburb of Beijing: chemical composition and evaluation of health risk. Environmental Science and Pollution Research, 22(21), 16688–16699.

    CAS  Google Scholar 

  • Gao, Y., Guo, X., Ji, H., Li, C., Ding, H., Briki, M., et al. (2016). Potential threat of heavy metals and PAHs in PM2.5 in different urban functional areas of Beijing. Atmospheric Research, 178, 6–16.

    Google Scholar 

  • Gao, Y., & Ji, H. (2018). Microscopic morphology and seasonal variation of health effect arising from heavy metals in PM2.5 and PM10: One-year measurement in a densely populated area of urban Beijing. Atmospheric Research, 212, 213–226.

    CAS  Google Scholar 

  • Ghauri, B., Mansha, M., & Khalil, C. (2012). Characterization of cytotoxicity of airborne particulates from urban areas of Lahore. Journal of Environmental Sciences, 24(11), 2028–2034.

    CAS  Google Scholar 

  • Gholampour, A., Nabizadeh, R., Hassanvand, M. S., Taghipour, H., Rafee, M., Alizadeh, Z., et al. (2016). Characterization and source identification of trace elements in airborne particulates at urban and suburban atmospheres of Tabriz. Iran. Environmental Science and Pollution Research, 23(2), 1703–1713.

    CAS  Google Scholar 

  • Gupta, T., & Mandariya, A. (2013). Sources of submicron aerosol during fog-dominated wintertime at Kanpur. Environmental Science and Pollution Research, 20(8), 5615–50629.

    CAS  Google Scholar 

  • Herut, B., Nimmo, M., Medway, A., Chester, R., & Krom, M. D. (2001). Dry atmospheric inputs of trace metals at the Mediterranean coast of Israel (SE Mediterranean): sources and fluxes. Atmospheric Environment, 35(4), 803–813.

    CAS  Google Scholar 

  • Holland, N. A., Chad, R. F., Ruben, C. S., Robert, B. D., David, A. B., & Christopher, J. W. (2017). Ultrafine particulate matter increases cardiac ischemia/reperfusion injury via mitochondrial permeability transition pore. Cardiovascular toxicology, 17, 441–450.

    CAS  Google Scholar 

  • Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., et al. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521), 218.

    CAS  Google Scholar 

  • Prakash, J., Singhai, A., Habib, G., Raman, R. S., & Gupta, T. (2017). Chemical characterization of PM1.0 aerosol in Delhi and source apportionment using positive matrix factorization. Environmental Science and Pollution Research, 24(1), 445–462.

    Google Scholar 

  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2), 60–72.

    Google Scholar 

  • Jena, S., & Singh, G. (2017). Human health risk assessment of airborne trace elements in Dhanbad. India. Atmospheric Pollution Research, 8(3), 490–502.

    Google Scholar 

  • Junker, M., Kasper, M., Röösli, M., Camenzind, M., Künzli, N., Monn, C., et al. (2000). Airborne particle number profiles, particle mass distributions and particle-bound PAH concentrations within the city environment of Basel: an assessment as part of the BRISKA Project. Atmospheric Environment, 34(19), 3171–3181.

    CAS  Google Scholar 

  • Kaul, D. S., Gupta, T., Tripathi, S. N., Tare, V., & Collett, J. L., Jr. (2011). Secondary organic aerosol: a comparison between foggy and non-foggy days. Environmental science and technology, 45(17), 7307–7313.

    CAS  Google Scholar 

  • Kaul, D. S., Gupta, T., & Tripathi, S. N. (2012). Chemical and microphysical properties of the aerosol during foggy and non-foggy episodes: a relationship between organic and inorganic content of the aerosol. Atmospheric Chemistry and Physics Discussions, 12(6), 14483–14524.

    Google Scholar 

  • Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM⁠2.5 and PM⁠10 particles and seasonal variations in urban and rural environment of Agra. India. Science of the Total Environment, 407, 6196–6204.

    CAS  Google Scholar 

  • Lakhani, A., Parmar, R. S., Satsangi, G. S., & Prakash, S. (2008). Size distribution of trace metals in ambient air of Agra. Indian Journal of Radio and Space Physics, 37(6), 434–442.

    CAS  Google Scholar 

  • Landkocz, Y., Ledoux, F., André, V., Cazier, F., Genevray, P., Dewaele, D., et al. (2017). Fine and ultrafine atmospheric particulate matter at a multi-influenced urban site: physicochemical characterization, mutagenicity and cytotoxicity. Environmental Pollution, 221, 130–140.

    CAS  Google Scholar 

  • Lei, Y. C., Chan, C. C., Wang, P. Y., Lee, C. T., & Cheng, T. J. (2004). Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats. Environmental Research, 95(1), 71–76.

    CAS  Google Scholar 

  • Li, H., Wang, Q. G., Yang, M., Li, F., Wang, J., Sun, Y., et al. (2016a). Chemical characterization and source apportionment of PM2.5 aerosols in a megacity of Southeast China. Atmospheric Research, 181, 288–299.

    CAS  Google Scholar 

  • Li, Y., Zhang, Z., Liu, H., Zhou, H., Fan, Z., Lin, M., et al. (2016b). Characteristics, sources and health risk assessment of toxic heavy metals in PM2.5 at a megacity of southwest China. Environmental geochemistry and health, 38(2), 353–362.

    CAS  Google Scholar 

  • Liang, X., Huang, T., Lin, S., Wang, J., Mo, J., Gao, H., et al. (2019). Chemical composition and source apportionment of PM1 and PM2.5 in a national coal chemical industrial base of the Golden Energy Triangle, Northwest China. Science of the Total Environment, 659, 188–199.

    CAS  Google Scholar 

  • Lin, Y. C., Hsu, S. C., Chou, C. C. K., Zhang, R., Wu, Y., Kao, S. J., et al. (2016). Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals. Environmental Pollution, 208, 284–293.

    CAS  Google Scholar 

  • López, J. M., Callén, M. S., Murillo, R., Garcia, T., Navarro, M. V., De la Cruz, M. T., et al. (2005). Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain). Environmental research, 99(1), 58–67.

    Google Scholar 

  • Martin, S., & Griswold, W. (2001). Human health effects of heavy metals. Environmental Science and Technology, 15, 1–6.

    Google Scholar 

  • Massey, D. D., Kulshrestha, A., & Taneja, A. (2013). Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India. Atmospheric Environment, 67, 278–286.

    CAS  Google Scholar 

  • Megido, L., Suárez-Peña, B., Negral, L., Castrillón, L., & Fernández-Nava, Y. (2017). Suburban air quality: Human health hazard assessment of potentially toxic elements in PM10. Chemosphere, 177, 284–291.

    CAS  Google Scholar 

  • NAAQS (National Ambient Air Quality Standards),. (2009). Central Pollution Control Board. India: Gazette notification, New Delhi.

    Google Scholar 

  • Naimabadi, A., Ghadiri, A., Idani, E., Babaei, A. A., Alavi, N., Shirmardi, M., et al. (2016). Chemical composition of PM10 and its in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz. Iran. Environmental Pollution, 211, 316–324.

    CAS  Google Scholar 

  • NEERI (National Environmental Engineering Research Institute), (20130. Comprehensive Environmental Management Plan (CEMP) for Taj Trapezium Zone (TTZ) Area.

  • NIOSH (National Institute for Occupational Safety and Health), (2007). Pocket Guide to Chemical Hazards. U.S. Department of Health and Human Services, Public Health Service, Centres for Disease Control and Prevention, Cincinnati https://www.cdc.gov/ nios/npg/npgd0344.html, accessed in April 2019.

  • Onat, B., Sahin, U. A., & Akyuz, T. (2013). Elemental characterization of PM2.5 and PM1 in dense traffic area in Istanbul Turkey. Atmospheric Pollution Research, 4(1), 101–105.

    CAS  Google Scholar 

  • Pateraki, St, Asimakopoulos, D. N., Maggos, T., Assimakopoulos, V. D., Bougiatioti, A., Bairachtari, K., et al. (2020). Chemical characterization, sources and potential health risk of PM2.5 and PM1 pollution across the Greater Athens Area. Chemosphere, 241, 125026.

    CAS  Google Scholar 

  • Perrone, M. G., Gualtieri, M., Ferrero, L., Porto, C. L., Udisti, R., Bolzacchini, E., et al. (2010). Seasonal variations in chemical composition and in vitro biological effects of fine PM from Milan. Chemosphere, 78(11), 1368–1377.

    CAS  Google Scholar 

  • Qi, J., Li, M., Zhen, Y., & Wu, L. (2018). Characterization of Bioaerosol Bacterial Communities During Hazy and Foggy Weather in Qingdao, China. Journal of Ocean University of China, 17(3), 516–526.

    Google Scholar 

  • Rajput, P., Singh, D. K., Singh, A. K., & Gupta, T. (2018). Chemical composition and source-apportionment of sub-micron particles during wintertime over Northern India: New insights on influence of fog-processing. Environmental Pollution, 233, 81–91.

    CAS  Google Scholar 

  • Roels, H. A., Bowler, R. M., Kim, Y., Henn, B. C., Mergler, D., Hoet, P., et al. (2012). Manganese exposure and cognitive deficits: a growing concern for manganese neurotoxicity. Neurotoxicology, 33(4), 872–880.

    CAS  Google Scholar 

  • Romanazzi, V., Casazza, M., Malandrino, M., Maurino, V., Piano, A., Schilirò, T., et al. (2014). PM10 size distribution of metals and environmental-sanitary risk analysis in the city of Torino. Chemosphere, 112, 210–216.

    CAS  Google Scholar 

  • Satsangi, A., Pachauri, T., Singla, V., Lakhani, A., & Kumari, K. M. (2013). Water soluble ionic species in atmospheric aerosols: Concentrations and sources at Agra in the Indo-Gangetic Plain (IGP). Aerosol and Air Quality Research, 13(6), 1877–1889.

    CAS  Google Scholar 

  • Sah, D., Verma, P. K., Kandikonda, M. K., & Lakhani, A. (2019). Pollution characteristics, human health risk through multiple exposure pathways, and source apportionment of heavy metals in PM10 at Indo-Gangetic site. Urban Climate, 27, 149–162.

    Google Scholar 

  • Seinfeld, J. H., Pandis, S. N., & Noone, K. (1998). Atmospheric chemistry and physics: from air pollution to climate change. Physics Today, 51, 88.

    Google Scholar 

  • Sharma, S. K., Mandal, T. K., Jain, S., Sharma, A., & Saxena, M. (2016). Source apportionment of PM2.5 in Delhi, India using PMF model. Bulletin of environmental contamination and toxicology, 97(2), 286–293.

    CAS  Google Scholar 

  • Singh, D. K., & Gupta, T. (2016). Source apportionment and risk assessment of PM1 bound trace metals collected during foggy and non-foggy episodes at a representative site in the Indo-Gangetic plain. Science of the Total Environment, 550, 80–94.

    CAS  Google Scholar 

  • Slezakova, K., Castro, D., Delerue-Matos, C., da Conceição Alvim-Ferraz, M., Morais, S., & do Carmo Pereira, M., (2013). Impact of vehicular traffic emissions on particulate-bound PAHs: Levels and associated health risks. Atmospheric Research, 127, 141–147.

    CAS  Google Scholar 

  • Solaimani, P., Saffari, A., Sioutas, C., Bondy, S. C., & Campbell, A. (2017). Exposure to ambient ultrafine particulate matter alters the expression of genes in primary human neurons. Neurotoxicology, 58, 50–57.

    CAS  Google Scholar 

  • Song, Y., Xie, S., Zhang, Y., Zeng, L., Salmon, L. G., & Zheng, M. (2006). Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Science of the Total Environment, 372(1), 278–286.

    CAS  Google Scholar 

  • Sulong, N. A., Latif, M. T., Khan, M. F., Amil, N., Ashfold, M. J., Wahab, M. I. A., et al. (2017). Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia. Science of the Total Environment, 601, 556–570.

    Google Scholar 

  • Sun, Y., Hu, X., Wu, J., Lian, H., & Chen, Y. (2014). Fractionation and health risks of atmospheric particle-bound As and heavy metals in summer and winter. Science of the Total Environment, 493, 487–494.

    CAS  Google Scholar 

  • Tan, J., Duan, J., Zhen, N., He, K., & Hao, J. (2016). Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing. Atmospheric Research, 167, 24–33.

    CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265.

    Google Scholar 

  • Tian, H., Cheng, K., Wang, Y., Zhao, D., Lu, L., Jia, W., et al. (2012). Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China. Atmospheric Environment, 50, 157–163.

    CAS  Google Scholar 

  • Tian, S., Pan, Y., Liu, Z., Wen, T., & Wang, Y. (2014). Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China. Journal of Hazardous Materials, 279, 452–460.

    CAS  Google Scholar 

  • Torkmahalleh, M. A., Gorjinezhad, S., Unluevcek, H. S., & Hopke, P. K. (2017). Review of factors impacting emission/concentration of cooking generated particulate matter. Science of the Total Environment, 586, 1046–1056.

    Google Scholar 

  • USEPA https://www.epa.gov/pm-pollution/national-ambient-air-quality-standards-naaqs-pm access on 14–07–2020.

  • Verma, N., Satsangi, A., Lakhani, A., & Kumari, K. M. (2017). Low molecular weight monocarboxylic acids in PM2.5 and PM10: Quantification, seasonal variation and source apportionment. Aerosol and Air Quality Research, 17(2), 485–498.

    CAS  Google Scholar 

  • Wang, K., Wang, W., Li, L., Li, J., Wei, L., Chi, W., et al. (2020). Seasonal concentration distribution of PM2.5 and PM10 and a risk assessment of bound trace metals in Harbin, China: Effect of the species distribution of heavy metals and heat supply. Scientific Reports, 10(1), 1–11.

    Google Scholar 

  • Wang, Z., & Liu, J. (2018). Spring-time PM2.5 elemental analysis and polycyclic aromatic hydrocarbons measurement in High-rise residential buildings in Chongqing and Xian. China. Energy and Buildings, 173, 623–633.

    Google Scholar 

  • Watson, J. G., Chow, J. C., & Houck, J. E. (2001). PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere, 43(8), 1141–1151.

    CAS  Google Scholar 

  • Wu, X., Cobbina, S. J., Mao, G., Xu, H., Zhang, Z., & Yang, L. (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research, 23(9), 8244–8259.

    CAS  Google Scholar 

  • Yadav, S., & Satsangi, P. G. (2013). Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environmental monitoring and assessment, 185(9), 7365–7379.

    CAS  Google Scholar 

  • Zajusz-Zubek, E., Radko, T., & Mainka, A. (2017). Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants. Environmental monitoring and assessment, 189(8), 389.

    Google Scholar 

  • Zhang, N., Han, B., He, F., Xu, J., Niu, C., Zhou, J., et al. (2015). Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: an exposure panel study in Tianjin, China. Air Quality, Atmosphere and Health, 8(4), 347–357.

    CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support for this work which is provided by Department of Science and Technology (EMR/2016/001255). The authors thank the Director, Dayalbagh Educational Institute, Agra and Head, Department of Chemistry for providing all facilities and help to carry out this work. The authors express their gratitude to Dr. Arun Chopra, Hindustan College of Science and Technology, Mathura, for extending facility for cytotoxicity analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Maharaj Kumari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangal, A., Satsangi, A., Lakhani, A. et al. Characterization of ambient PM1 at a suburban site of Agra: chemical composition, sources, health risk and potential cytotoxicity. Environ Geochem Health 43, 621–642 (2021). https://doi.org/10.1007/s10653-020-00737-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00737-6

Keywords

Navigation