Skip to main content

Advertisement

Log in

Remediation by means of EDTA of an agricultural calcareous soil polluted with Pb

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The dispersion of mine tailings affects ecosystems due to their high content of potentially toxic elements. Environmental risk increases when the soil impacted by tailings is used for agriculture; this use may result in health impacts. This study analyzes the feasibility of remediating a calcareous soil (used for maize cultivation) polluted with lead in the semiarid zone of Zimapán, México, by using EDTA as an extractant. Total geoavailable and bioaccessible concentrations in the gastric and intestinal phases were determined to evaluate lead availability and health risk. The soil was then washed with EDTA, and the geochemical fractionation (interchangeable, carbonates, Fe/Mn oxy-hydroxides, organic matter–sulfides, and residual) and impact on the mesophile bacteria and fungi/yeast populations were analyzed. The results showed total Pb concentrations up to 647 ± 3.50 mg/kg, a 46% bioaccessible fraction (297 ± 9.90 mg/kg) in the gastric phase and a 12.2% (80 ± 5 mg/kg) bioaccessible fraction in the intestinal phase, indicating a health and environmental risk. Meanwhile, the geochemical fractionation before washing showed a Pb fraction mainly consisting of Fe/Mn oxy-hydroxides (69.6%); this reducible fraction may progressively increase its bioaccessibility. Geochemical fractionation performed in the washed soil showed differences from that determined before the treatment; however, the iron and manganese fraction, at 42.4%, accounted for most of the Pb. The soil microbiology was also modified by EDTA, with an increase in aerobic bacteria and a decrease in fungi/yeast populations. Although 44% total lead removal was achieved, corresponding to a final concentration of 363.50 ± 43.50 mg/kg (below national and USEPA standards), washing with EDTA increased the soluble and interchangeable lead concentrations. Statistical analysis indicated a significant effect (p < 0.05) of EDTA on the soil’s geochemical fractionation of lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amrate, S., Akretche, D. E., Innocent, C., & Seta, P. (2005). Removal of Pb from a calcareous soil during EDTA-enhanced electrkinetic extraction. Science of the Total Environment, 349, 56–66.

    Article  CAS  Google Scholar 

  • Armienta, M. A., Mugica, V., Reséndiz, I., & Gutierrez, A. M. (2016). Arsenic and metals mobility in soils Impacted by tailings at Zimapán Mexico. Journal of Soils and Sediments, 16(4), 1267–1278.

    Article  CAS  Google Scholar 

  • Armienta, M. A., Beltrán, M., Martínez, S., & Labastida, I. (2019). Heavy metal assimilation in maize (Zea mays L.) plants growing near mine tailings. Environmental Geochemistry and Health, 42, 2361–2375.

    Article  Google Scholar 

  • Barona, A., Aranguiz, I., & Elías, A. (2001). Metal associations in soils before and after EDTA extractive decontamination: Implications for the effectiveness of further clean-up procedures. Environmental Pollution, 113, 79–85.

    Article  CAS  Google Scholar 

  • Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C. G. (2005). The geochemistry of acid mine drainage. In B. S. Lollar, H. D. Holland, & K. K. Turekian (Eds.), Environmental geochemistry vol. 9 treatise on geochemistry (pp. 149–195). Oxford: Elsevier-Pergamon.

    Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., et al. (2014). Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166.

    Article  CAS  Google Scholar 

  • Castañeda, M. T. (2009). MicrobiologíaAplicada (p. 240). México: Manual de laboratorio de microbiología. Universidad AutónomaMetropolitana. D. F.

    Google Scholar 

  • Castro-Larragoitia, J., Kramar, U., Monroy-Fernández, M. G., Viera-Décida, F., & García-González, E. G. (2013). Heavy metal and arsenic dispersion in a copper-skarn mining district in a Mexican semi-arid environment: sources, pathways, and fate. Environmental Earth Sciences, 69, 1915–1929.

    Article  CAS  Google Scholar 

  • Di Palma, L., Ferrantelli, P., Merli, C., Petrucci, E., & Pitzolu, I. (2007). Influence of soil organic matter on copper extraction from contaminated soil. Soil and Sediment Contamination: An International Journal, 16(3), 323–335.

    Article  Google Scholar 

  • Duarte, Z. V. M., Carrillo-González, R., Lozano, M. L., & Carrasco, V. (2019). Fractionation of heavy metals in mine tailings amended with compost manure. Soil and Sediment Contamination: An International Journal, 28(2), 148–161.

    Article  Google Scholar 

  • Gabos, M. B., Abreu, C. A., & Coscione, A. R. (2009). EDTA assisted phytorremediation of a Pb contaminated soil: Metal leaching and uptake by black beans. Scientia Agricola, 66(4), 506–514.

    Article  CAS  Google Scholar 

  • García-Meza, J. V. (2008). Autotrophic biofilm development on superficial samples of the gold-silver mine tailings, Valenciana (Mexico): Pioneers in tailings remediation? Bulletin on Environmental Contamination and Toxicology, 80(1), 53–57.

    Article  Google Scholar 

  • Hill, W., & Evans, D. (1965). Solubility of twenty minerals in selected versene (EDTA) solutions. Resource document. Kansas Geological Survey.

  • https://www.kgs.ku.edu/Publications/Bulletins/175_3/index.html. Retrieved Mar, 6 2020.

  • INEGI, Instituto Nacional de Estadística y Geografía (2020) Resource document.

  • https://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/13/13084.pdf Retrieved Mar, 6 2020.

  • https://www.inegi.org.mx/default.html Retrieved Mar 6, 2020.

  • Juhasz, A. L., Weber, J., & Smith, E. (2011). Impact of soil particle size and bioaccessibility on children and adult lead-exposure in peri-urban contaminated soils. Journal of Hazardous Materials, 186, 1870–1879.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (Fouth, p. 505). Boca Raton, USA: CRC Press.

    Google Scholar 

  • Kim, C. (1996). Extraction of lead using EDTA: Factors affecting extraction, effects of amorphous iron and recycling of used EDTA. PHD dissertation, UMI, 105.

  • Labastida, L., Armienta, M. A., Lara, R. H., Briones, R., González, I., & Romero, F. (2019). Kinetic approach for the appropriate selection of indigenous limestones for acid mine drainage treatment with passive systems. Science of the Total Environment, 677, 404–417.

    Article  CAS  Google Scholar 

  • Lara, R. H., Briones, R., Monroy, M. G., Mullet, M., Humbert, B., Dossot, M., et al. (2011). Galena weathering under simulated calcareous conditions. Science of the Total Environment, 409, 3971–3979.

    CAS  Google Scholar 

  • Lin, Z., Comet, B., Qvarfort, U., & Herbert, R. (1995). The chemical and mineralogical behavior of Pb shooting range soils from Central Sweden. Environmental Pollution, 89(3), 303–309.

    Article  CAS  Google Scholar 

  • Mahvi, A. H., Mesdaghinia, A. R., & Naghipoor, D. (2005). Comparison of heavy metals extraction efficiency in contaminated soils by various concentrations of EDTA. Pakistan Journal of Biological Sciences, 8(8), 1081–1085.

    Article  CAS  Google Scholar 

  • Mahmood-ul-Hassan, M., Suthar, V., Ahmad, R., & Yousra, M. (2017). Heavy metal phytoextraction—natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat. Environmental monitoring and assessment, 189, 591.

    Article  Google Scholar 

  • Méndez, M., & Armienta, M. A. (2003). Arsenic phase distribution in Zimapán mine tailings Mexico. RevistaInternacional de ContaminaciónAmbiental, 42(1), 131–140.

    Google Scholar 

  • Moreno, R., Téllez, J., & Monroy, M. (2012). Influencia de los minerales de los jales en la bioaccesibilidad de arsénico, plomo, zinc y cadmio en el distritomineroZimapán México. RevistaInternacional de ContaminaciónAmbiental, 28(3), 203–218.

    Google Scholar 

  • Niinae, M., Nishigaki, K., & Aoki, K. (2008). Removal of lead from contaminated soils with chelating agents. Materials Transactions, 49(10), 2377–2382.

    Article  CAS  Google Scholar 

  • Oviedo, C., & Rodríguez, J. (2003). EDTA: the chelating agent under environmental scrutiny. Quimica Nova, 26(6), 901–905.

    Article  CAS  Google Scholar 

  • Rangaswami, G., & Bagyaraj, D. (2005). Agricultural microbiology. New Delhi: Prentice-Hall of India.

    Google Scholar 

  • Sariñana-Ruiz, Y. A., Vazquez-Arenas, J., Sosa-Rodriguez, F. S., Labastida, I., Armienta, M. A., Aragón-Piña, A., et al. (2017). Assessment of arsenic and fluorine in surface soil to determine environmental and health risks factors in the Comarca Lagunera, Mexico. Chemosphere, 178, 391–401.

    Article  Google Scholar 

  • SEMARNAT, Secretaría del Medio Ambiente y Recursos Naturales, (2000). NOM-021-SEMARNAT-2000. Norma Oficial Mexicana que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio y análisis. Diario Oficial de la Federación.

  • SEMARNAT, Secretaría del Medio Ambiente y Recursos Naturales, (2004). NOM-147-SEMARNAT/SSA1–2004. Norma Oficial Mexicana que establece criterios para determiner las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexvalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. México: Diario Oficial de la Federación.

  • SEMARNAT, Secretaría del Medio Ambiente y Recursos Naturales, (2009). NOM-157-SEMARNAT-2009. Norma Oficial Mexicana que establece los elementos y procedimientos que se deben considerar al formular y aplicar los planes de manejo de residuos mineros, con el propósito de promover la prevención de la generación y la valorización de los residuos, así como alentar su manejo integral a través de nuevos procesos, métodos y tecnologías que sean económica, técnica y ambientalmente factibles. México: Diario Oficial de la Federación.

  • SSA, Secretaría de Salud, (1994) MODIFICACION a la Norma Oficial Mexicana NOM-127-SSA1–1994, Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. México: Diario Oficial de la Federación.

  • Sun, B., Zhao, F. L., Lombi, E., & McGrath, S. P. (2001). Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 113(2), 111–120.

    Article  CAS  Google Scholar 

  • Suthar, V., Memon, K. S., & Mahmood-ul-Hassan, M. (2014). EDTA-enhanced phytoremediation of contaminated calcareous soils: Heavy metal bioavailability, extractability, and uptake by maize and sesbania. Enviromental Monitoring and Assessment, 186, 3957–3968.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry (3rd edn.). New York: Wiley, 1022 p.

    Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Torres, L. G., Lopez, R. B., & Beltran, M. (2012). Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing. Physics and Chemistry of the Earth, Parts A/B/C, 37–39, 30–36.

    Article  Google Scholar 

  • Udovic, M., & Lestan, D. (2012). EDTA and HCL leching of calcareous and acidic soils polluted with potentially toxic metals: Remediation effeciency and soil impact. Chemosphere, 88, 718–724.

    Article  CAS  Google Scholar 

  • USEPA, United States Environmental Protection Agency (2001). Residential lead hazard standards-TSCA section 403. Office of pollution prevention and toxics. Environmental Protection Agency, US.

  • USEPA, United States Environmental Protection Agency (2003). Test methods. SW-846 7000A Index to EPA Test methods, april 2003 revised version.US.

  • USEPA, United States Environmental Protection Agency (2007). Method 3051A. microwave assisted acid digestion of sediments, sludges, soils and oils, US.

Download references

Acknowledgements

We acknowledge Alejandra Aguayo and Olivia Cruz for collaborating in the chemical determinations. We are indebted to two anonymous reviewers for their important observations and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aurora Armienta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labastida, I., Mercado, L.A., Rojas, S. et al. Remediation by means of EDTA of an agricultural calcareous soil polluted with Pb. Environ Geochem Health 43, 2231–2242 (2021). https://doi.org/10.1007/s10653-020-00754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00754-5

Keywords

Navigation