Skip to main content

Advertisement

Log in

Trend analysis of global usage of digital soil mapping models in the prediction of potentially toxic elements in soil/sediments: a bibliometric review

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The rising and continuous pollution of the soil from anthropogenic activities is of great concern. Owing to this concern, the advent of digital soil mapping (DSM) has been a tool that soil scientists use in this era to predict the potentially toxic element (PTE) content in the soil. The purpose of this paper was to conduct a review of articles, summarize and analyse the spatial prediction of potentially toxic elements, determine and compare the models' usage as well as their performance over time. Through Scopus, the Web of Science and Google Scholar, we collected papers between the year 2001 and the first quarter of 2019, which were tailored towards the spatial PTE prediction using DSM approaches. The results indicated that soil pollution emanates from diverse sources. However, it provided reasons why the authors investigate a piece of land or area, highlighting the uncertainties in mapping, number of publications per journal and continental efforts to research as well as published on trending issues regarding DSM. This paper reveals the complementary role machine learning algorithms and the geostatistical models play in DSM. Nevertheless, geostatistical approaches remain the most preferred model compared to machine learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adagunodo, T. A., Sunmonu, L. A., & Emetere, M. E. (2018). Heavy metals’ data in soils for agricultural activities. Data in Brief, 18, 1847–1855.

    CAS  Google Scholar 

  • Alloway, B. (2013). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Berlin: Springer.

    Google Scholar 

  • Appelhans, T., Mwangomo, E., Hardy, D. R., Hemp, A., & Nauss, T. (2015). Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro Tanzania. Spatial Statistics, 14, 91–113.

    Google Scholar 

  • Armah, F. A., Quansah, R., & Luginaah, I. (2014). A systematic review of heavy metals of anthropogenic origin in environmental media and biota in the context of gold mining in Ghana. International Scholarly Research Notices, 2014, 1–37.

    Google Scholar 

  • Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B. M., Hong, S. Y., et al. (2014). GlobalSoilMap. Toward a Fine-Resolution Global Grid of Soil Properties. In Advances in Agronomy (Vol. 125, pp. 93–134).

  • Basta, N. T., Ryan, J. A., & Chaney, R. L. (2005). Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. Journal of Environmental Quality, 34(1), 49–63.

    CAS  Google Scholar 

  • Beguin, J., Fuglstad, G. A., Mansuy, N., & Paré, D. (2017). Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches. Geoderma, 306, 195–205.

    CAS  Google Scholar 

  • Behrens, T., Schmidt, K., MacMillan, R. A., & Viscarra Rossel, R. A. (2018). Multi-scale digital soil mapping with deep learning. Scientific Reports. https://doi.org/10.1038/s41598-018-33516-6

    Article  Google Scholar 

  • Bundschuh, J., Litter, M. I., Parvez, F., Román-Ross, G., Nicolli, H. B., Jean, J. S., et al. (2012). One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2–35.

    CAS  Google Scholar 

  • Cachada, A., Rocha-Santos, T. A. P., & Duarte, A. C. (2017). Soil and pollution: An introduction to the main issues. Soil Pollution: From Monitoring to Remediation. https://doi.org/10.1016/B978-0-12-849873-6.00001-7.

  • Chen, T., Liu, X., Li, X., Zhao, K., Zhang, J., Xu, J., et al. (2009). Heavy metal sources identification and sampling uncertainty analysis in a field-scale vegetable soil of Hangzhou China. Environmental Pollution, 157(3), 1003–1010.

    CAS  Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, 143–153.

    Google Scholar 

  • Chen, H., Zheng, C., Tu, C., & Zhu, Y. G. (1999). Heavy metal pollution in soils in China: Status and countermeasures. Ambio, 28(2), 130–134.

    Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46.

    Google Scholar 

  • Cressie, N., & Kornak, J. (2003). Spatial statistics in the presence of location error with an application to remote sensing of the environment. Statistical Science, 18(4), 436–456.

    Google Scholar 

  • EEA. (2014). Progress in Management of Contaminated Sites (CSI 015/LSI 003).

  • FAO and ITPS. (2015). Status of the World’s Soil Resources. Intergovernmental Technical Panel on Soils, 123–126.

  • FAO and ITPS. (2018). Status of the World’s Soil Resources. Intergovernmental Technical Panel on Soils, 123–126.

  • Finke, P. A. (2006). Chapter 39 quality Assessment of Digital Soil Maps: Producers and Users Perspectives. Developments in Soil Science. https://doi.org/10.1016/S0166-2481(06)31039-2

    Article  Google Scholar 

  • GAO, U. (2015). United States Government Accountability Office. (2015). Trends in Federal Funding and Cleanup of EPA’s Nonfederal National Priorities List Sites (GAO Publication No. GAO-15-812). Washington, DC: U.S. Government Printing Office.

  • Gasch, C. K., Hengl, T., Gräler, B., Meyer, H., Magney, T. S., & Brown, D. J. (2015). Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D + T: The Cook Agronomy Farm data set. Spatial Statistics, 14, 70–90.

    Google Scholar 

  • Gonzalez, C., Gonzalez-Macias, G., Macias, M., Schifter, I., Lluch-Cota, D. B., Endez-Rodriguez, M., et al. (2006). Distribution, enrichment and accumulation of heavy metals in coastal sediments of salina cruz bay, m ´ exico. Environmental Monitoring and Assessment, 118(1–3), 211–230.

    Google Scholar 

  • Grunwald, S. (2009). Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152(3–4), 195–207.

    Google Scholar 

  • Gunson, A. J., Gunson, A. J., & Jian, Y. (2001). Artisanal Mining in The People’s Republic of China Communities and Small-scale of Mines (CASM) under the World Bank View project Artisanal Mining in The People’s Republic of China. researchgate.net.

  • Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer, C. E., & Schmidt, M. G. (2016). An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma, 265, 62–77.

    Google Scholar 

  • ISI. (2020). Developing Countries - ISI. https://www.isi-web.org/index.php/capacity-building/developing-countries.

  • Iqbal, J., Thomasson, J. A., Jenkins, J. N., Owens, P. R., & Whisler, F. D. (2005). Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society, 69(4), 1338–1350.

    CAS  Google Scholar 

  • Iñigo, V., Andrades, M., Alonso-Martirena, J. I., Marín, A., & Jiménez-Ballesta, R. (2011). Multivariate statistical and GIS-based approach for the identification of Mn and Ni concentrations and spatial variability in soils of a humid mediterranean environment: La Rioja, Spain. Water, Air, and Soil Pollution, 222(1–4), 271–284.

    Google Scholar 

  • Iñigo, V., Andrades, M. S., Alonso-Martirena, J. I., Marín, A., & Jiménez-Ballesta, R. (2014). Background values and distribution trends of Cu and Zn in soils of humid Mediterranean environment. Chemistry and Ecology, 30(3), 252–266.

    Google Scholar 

  • Jiang, Z. (2018). A survey on spatial prediction methods. IEEE Transactions on Knowledge and Data Engineering., 31, 164.

    Google Scholar 

  • Jiménez-Ballesta, R., García-Navarro, F. J., Bravo, S., Amorós, J. A., Pérez-de-los-Reyes, C., & Mejías, M. (2017). Environmental assessment of potential toxic trace element contents in the inundated floodplain area of Tablas de Daimiel wetland (Spain). Environmental Geochemistry and Health, 39(5), 1159–1177.

    Google Scholar 

  • Juel, A., Groom, G. B., Svenning, J. C., & Ejrnæs, R. (2015). Spatial application of Random Forest models for fine-scale coastal vegetation classification using object based analysis of aerial orthophoto and DEM data. International Journal of Applied Earth Observation and Geoinformation, 42, 106–114.

    Google Scholar 

  • Kaasalainen, M., & Yli-Halla, M. (2003). Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution, 126(2), 225–233.

    CAS  Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Trace Elements from Soil to Human. https://doi.org/10.1007/978-3-540-32714-1

    Article  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing China. Environmental Pollution, 152(3), 686–692.

    CAS  Google Scholar 

  • Kuo, S., Heilman, P. E., & Baker, A. S. (1983). Distribution and forms of copper, zinc, cadmium, iron, and manganese in soils near a copper smelter. Soil Science., 135, 101.

    CAS  Google Scholar 

  • Lagacherie, P., & McBratney, A. B. (2006). Chapter 1 spatial soil information systems and spatial soil inference systems: Perspectives for digital soil mapping. Developments in Soil Science. https://doi.org/10.1016/S0166-2481(06)31001-X

    Article  Google Scholar 

  • Lark, R. M. (1995). A reappraisal of unsupervised classification, II: Optimal adjustment of the map legend and a neighbourhood approach for mapping legend units. International Journal of Remote Sensing, 16(8), 1445–1460.

    Google Scholar 

  • Lasat, M. M. (1999). Phytoextraction of metals from contaminated soil: A review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research, 2(1), 1–1.

    Google Scholar 

  • Liang, J., Feng, C., Zeng, G., Gao, X., Zhong, M., Li, X., et al. (2017). Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environmental Pollution, 225, 681–690.

    CAS  Google Scholar 

  • Liu, W. X., Li, X. D., Shen, Z. G., Wang, D. C., Wai, O. W. H., & Li, Y. S. (2003). Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environmental Pollution, 121(3), 377–388.

    CAS  Google Scholar 

  • Luo, L., Ma, Y., Zhang, S., Wei, D., & Zhu, Y. G. (2009a). An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 90(8), 2524–2530.

    CAS  Google Scholar 

  • Luo, Y., Wu, L., Liu, L., Han, C., & Li, Z. (2009b). Heavy metal contamination and remediation in Asian agricultural land. National Institutes for Agro-Environmental Sciences (Vol. 1).

  • Marín, A., Andrades, M., Iñigo, V., & Jiménez-Ballesta, R. (2016). Lead and Cadmium in Soils of La Rioja Vineyards Spain. Land Degradation and Development, 27(4), 1286–1294.

    Google Scholar 

  • McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.

    Google Scholar 

  • Mielke, H. W., & Reagan, P. L. (1998). Soil is an important pathway of human lead exposure. Environmental Health Perspectives., 106, 217.

    CAS  Google Scholar 

  • Minasny, B., & McBratney, A. B. (2016). Digital soil mapping: A brief history and some lessons. Geoderma, 264, 301–311.

    Google Scholar 

  • Mirsal, I. (2008). Soil pollution: Origin monitoring & remediation (p. 310). Berlin: Springer.

    Google Scholar 

  • Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311(1–3), 205–219.

    CAS  Google Scholar 

  • Ogundele, L. T., Owoade, O. K., Hopke, P. K., & Olise, F. S. (2017). Heavy metals in industrially emitted particulate matter in Ile-Ife, Nigeria. Environmental Research, 156, 320–325.

    CAS  Google Scholar 

  • Oldeman, L. (1991). World map on status of human - induced soil degradation. Wageningen: Ref.

    Google Scholar 

  • Padarian, J., Minasny, B., & McBratney, A. B. (2019). Using deep learning for digital soil mapping. Soil, 5(1), 79–89.

    Google Scholar 

  • Pontius, R. G., & Cheuk, M. L. (2006). A generalized cross-tabulation matrix to compare soft-classified maps at multiple resolutions. International Journal of Geographical Information Science, 20(1), 1–30.

    Google Scholar 

  • Rhee, J., & Im, J. (2017). Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agricultural and Forest Meteorology, 237–238, 105–122.

    Google Scholar 

  • Rossiter, D. G. (2018). Past, present & future of information technology in pedometrics. Geoderma., 324, 131.

    Google Scholar 

  • Scragg, A. (2006). Environmental Biotechnology, Oxford University Press, Oxford, UK, 2nd edition, 2006. Oxford: Oxford University Press.

    Google Scholar 

  • Scull, P., Franklin, J., Chadwick, O. A., & McArthur, D. (2003). Predictive soil mapping: A review. Progress in Physical Geography, 27(2), 171–197.

    Google Scholar 

  • Seaward, M. R. D, Richardson, D. H. S. (1990). Atmospheric sources of metal pollution and effects on vegetation. Heavy metal tolerance in plants evolutionary aspects, 75–92.

  • Srivastava, P. K., Islam, T., Gupta, M., Petropoulos, G., & Dai, Q. (2015). WRF dynamical downscaling and bias correction schemes for NCEP estimated hydro-meteorological variables. Water Resources Management, 29(7), 2267–2284.

    Google Scholar 

  • Swartjes, F. A., & Siciliano, S. (2012). Dealing with contaminated sites: from theory towards practical application. Soil Science Society of America Journal, 76(2), 748–748.

    Google Scholar 

  • Thevenon, F., Guédron, S., Chiaradia, M., Loizeau, J. L., & Poté, J. (2011). (Pre-) historic changes in natural and anthropogenic heavy metals deposition inferred from two contrasting Swiss Alpine lakes. Quaternary Science Reviews, 30(1–2), 224–233.

    Google Scholar 

  • Tóth, G., Hermann, T., Szatmári, G., & Pásztor, L. (2016). Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Science of the Total Environment, 565, 1054–1062.

    Google Scholar 

  • van Zijl, G. (2019). Digital soil mapping approaches to address real world problems in southern Africa. Geoderma, 337, 1301–1308.

    Google Scholar 

  • Veronesi, F., & Schillaci, C. (2019). Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation. Ecological Indicators, 101, 1032–1044.

    CAS  Google Scholar 

  • WHO (2019). International Lead Poisoning Prevention Week of Action (October 2015): Examples of planned activities by governments, non-governmental organizations and others.

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists, 2nd Edition (Statistics in Practice). Chichester: Wiley.

    Google Scholar 

  • Woodcock, C. E., & Gopal, S. (2000). Fuzzy set theory and thematic maps: Accuracy assessment and area estimation. International Journal of Geographical Information Science, 14(2), 153–172.

    Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2014). Heavy metals in contaminated soils: A review of sources, chemistry, risks, and best available strategies for remediation. Heavy Metal Contamination of Water and Soil Analysis, Assessment, and Remediation Strategies. https://doi.org/10.1201/b16566-3

    Article  Google Scholar 

  • Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment., 642, 690.

    CAS  Google Scholar 

  • Zhang, G. L., Liu, F., & Song, X. D. (2017). Recent progress and future prospect of digital soil mapping: A review. Journal of Integrative Agriculture., 16, 2871.

    Google Scholar 

  • Zhang, M. K., Liu, Z. Y., & Wang, H. (2010). Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis, 41(7), 820–831.

    CAS  Google Scholar 

  • Zhang, X., Zhang, X., & Zhong, T. (2014). Spatial distribution and accumulation of heavy metal in arable land soil of China. Huan jing ke xue, 35, 692.

    Google Scholar 

  • Zhu, A. X., Hudson, B., Burt, J., Lubich, K., & Simonson, D. (2001). Soil Mapping using GIS, expert knowledge, and fuzzy logic. Soil Science Society of America Journal, 65(5), 1463–1472.

    CAS  Google Scholar 

  • Zhu, A.-X., Lu, G., Liu, J., Qin, C.-Z., & Zhou, C. (2018). Spatial prediction based on Third Law of Geography. Annals of GIS, 24(4), 225–240.

    Google Scholar 

List of reference used for the bibliometric review

  • Maas, S., Scheifler, R., Benslama, M., Crini, N., Lucot, E., Brahmia, Z., & Giraudoux, P. (2010). Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria. Environmental Pollution, 158(6), 2294–2301.

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: a case study from the city of Palermo (Sicily). Italy. Science of the Total Environment, 300(1–3), 229–243.

  • Al Maliki, A., Bruce, D., & Owens, G. (2015). Spatial distribution of Pb in urban soil from Port Pirie, South Australia. Environmental Technology & Innovation, 4, 123–136.

  • Birch, G. F., Vanderhayden, M., & Olmos, M. (2011). The nature and distribution of metals in the Sydney estuary catchment, Australia. Water, Air, & Soil Pollution, 216(1–4), 581–604.

  • Johnson, L. E., Bishop, T. F. A., & Birch, G. F. (2017). Modeling drivers and distribution of lead and zinc concentrations in soils of an urban catchment (Sydney estuary, Australia). Science of The Total Environment, 598, 168–178.

  • Robinson, T. P., & Metternicht, G. (2006). Testing the performance of spatial interpolation techniques for mapping soil properties. Computers and electronics in agriculture, 50(2), 97–108.

  • Shamsoddini, A., Raval, S., & Taplin, R. (2014). SPECTROSCOPIC ANALYSIS OF SOIL METAL CONTAMINATION AROUND A DERELICT MINE SITE IN THE BLUE MOUNTAINS, AUSTRALIA. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2(7).

  • Verstraeten, G., Prosser, I. P., & Fogarty, P. (2007). Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment. Australia. Journal of Hydrology, 334(3–4), 440–454.

  • Wilford, J., de Caritat, P., & Bui, E. (2016). Predictive geochemical mapping using environmental correlation. Applied geochemistry, 66, 275–288.

  • Delbari, M., Afrasiab, P., & Loiskandl, W. (2009). Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content. CATENA, 79(2), 163–169.

  • Van Meirvenne, M., & Goovaerts, P. (2001). Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold. Geoderma, 102(1–2), 75–100.

  • Burak, D. L., Fontes, M. P., Santos, N. T., Monteiro, L. V. S., de Sousa Martins, E., & Becquer, T. (2010). Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau. Geoderma, 160(2), 131–142.

  • Camargo, L. A., Marques, J., Jr., Barrón, V., Alleoni, L. R. F., Pereira, G. T., Teixeira, D. D. B., & de Souza Bahia, A. S. R. (2018). Predicting potentially toxic elements in tropical soils from iron oxides, magnetic susceptibility and diffuse reflectance spectra. CATENA, 165, 503–515.

  • De Oliveira, M. T. G., Rolim, S. B. A., de Mello-Farias, P. C., Meneguzzi, Á., & Lutckmeier, C. (2008). Industrial pollution of environmental compartments in the Sinos River Valley, RS, Brazil: geochemical–biogeochemical characterization and remote sensing. Water, air, and soil pollution, 192(1–4), 183–198.

  • Lourenço, R. W., Landim, P. M. B., Rosa, A. H., Roveda, J. A. F., Martins, A. C. G., & Fraceto, L. F. (2010). Mapping soil pollution by spatial analysis and fuzzy classification. Environmental earth science, 60(3), 495–504.

  • Bower, J. A., Lister, S., Hazebrouck, G., & Perdrial, N. (2017). Geospatial evaluation of lead bioaccessibility and distribution for site specific prediction of threshold limits. Environmental Pollution, 229, 290–299.

  • Forsythe, K. W., Dennis, M., & Marvin, C. H. (2004). Comparison of Mercury and Lead Sediment Concentrations in Lake Ontario (1968–1998) and Lake Erie (1971–1997/98) using a GIS-Based Kriging Approach. Water Quality Research Journal, 39(3), 190–206.

  • Oyarzun, R., Oyarzún, J., Lillo, J., Maturana, H., & Higueras, P. (2007). Mineral deposits and Cu–Zn–As dispersion–contamination in stream sediments from the semiarid Coquimbo Region. Chile. Environmental Geology, 53(2), 283–294.

  • Cai, L., Xu, Z., Bao, P., He, M., Dou, L., Chen, L., & Zhu, Y. G. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189–195.

  • Cao, S., Lu, A., Wang, J., & Huo, L. (2017). Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area. Science of the Total Environment, 580, 430–439.

  • Ding, Q., Wang, Y., & Zhuang, D. (2018). Comparison of common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. Journal of Environmental Management, 212, 23–31.

  • Dong, J., Yu, M., Bian, Z., Wang, Y., & Di, C. (2011). Geostatistical analyses of heavy metal distribution in reclaimed mine land in Xuzhou. China. Environmental Earth Sciences, 62(1), 127–137.

  • Duan, X., Zhang, G., Rong, L., Fang, H., He, D., & Feng, D. (2015). Spatial distribution and environmental factors of catchment-scale soil heavy metal contamination in the dry-hot valley of Upper Red River in southwestern China. CATENA, 135, 59–69.

  • Gu, Y. G., Li, Q. S., Fang, J. H., He, B. Y., Fu, H. B., & Tong, Z. J. (2014). Identification of heavy metal sources in the reclaimed farmland of the pearl river estuary in China using a multivariate geostatistical approach. Ecotoxicology and environmental safety, 105, 7–12.

  • Guagliardi, I., Buttafuoco, G., Cicchella, D., & De Rosa, R. (2013). A multivariate approach for anomaly separation of potentially toxic trace elements in urban and peri-urban soils: an application in a southern Italy area. Journal of soils and sediments, 13(1), 117–128.

  • Husnizar, H., Wilopo, W., & amp; Yuliansyah, AT, . (2018). The prediction of heavy metals lead (Pb) and zinc (Zn) contents in soil using NIRs technology and PLSR regression method. Journal of Degraded and Mining Lands Management, 5(3), 1153.

  • Jin, Y., O’Connor, D., Ok, Y. S., Tsang, D. C., Liu, A., & Hou, D. (2019). Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environment international, 124, 320–328.

  • Johnbull, O., Abbassi, B., & Zytner, R. G. (2018). Risk assessment of heavy metals in soil based on the geographic information system-Kriging technique in Anka. Nigeria. Environmental Engineering Research, 24(1), 150–158.

  • Li, D. A., Jiang, J., Li, T., & amp; Wang, J. . (2016). Soil heavy metal contamination related to roasted stone coal slag: study based on geostatistical and multivariate analyzes. Environmental Science and Pollution Research, 23(14), 14405–14413.

  • Li, F., Huang, J., Zeng, G., Huang, X., Li, X., Liang, J., & amp; Bai, B. . (2014). Integrated source apportionment, risk risk mapping, and heavy metals in surface sediments: a study of Dongting Lake, Middle China. Human and Ecological Risk Assessment: An International Journal, 20(5), 1213–1230.

  • Li, P., Zhi, Y., Shi, J., Zeng, L., & Wu, L. (2015). County-scale temporal–spatial distribution and variability tendency of heavy metals in arable soils influenced by policy adjustment during the last decade: a case study of Changxing. China. Environmental Science and Pollution Research, 22(22), 17937–17947.

  • Li, X., Wu, T., Bao, H., Liu, X., Xu, C., Zhao, Y., & amp; Yu, H. . (2017). Potential toxic element (PTE) contamination in Baoji urban soil (NW China): spatial distribution, mobility behavior, and health risk. Environmental Science and Pollution Research, 24(24), 19749–19766.

  • Liang, J., Feng, C., Zeng, G., Gao, X., Zhong, M., Li, X., & Fang, Y. (2017). Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environmental Pollution, 225, 681–690.

  • Lin, Y. P., Chang, T. K., Shih, C. W., & Tseng, C. H. (2002). Factorial and indicator kriging methods using a geographic information system to delineate spatial variation and pollution sources of soil heavy metals. Environmental Geology, 42(8), 900–909.

  • Liu, H., Liu, G., Zhou, Y., & He, C. (2017). Spatial Distribution and Influence Analysis of Soil Heavy Metals in Hilly Region of Sichuan Basin. Polish Journal of Environmental Studies , 26 (3).

  • Liu, M., Liu, X., Wu, M., Li, L., & Xiu, L. (2011). Integrating spectral indices with environmental parameters for estimating heavy metal concentration in rice using dynamic fuzzy neural-network model. Computers & Geosciences, 37(10), 1642–1652.

  • Liu, M., Yang, Y., Yun, X., Zhang, M., & Wang, J. (2015). Concentrations, distribution, sources, and ecological risk assessment of heavy metals in the topsoil of the Three Gorges Dam region. China. Environmental Monitoring and Assessment, 187(3), 147.

  • Liu, X., Wu, J., & Xu, J. (2006). Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environmental pollution, 141(2), 257–264.

  • Liu, Y., Ma, Z., Lv, J., & Bi, J. (2016). Identifying sources and hazardous risks of heavy metals in East China. Journal of Geographical Sciences, 26(6), 735–749.

  • Lu, J., Jiao, W. B., Qiu, H. Y., Chen, B., Huang, X. X., & Kang, B. (2018). Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You’xi County southeast China. Geoderma, 310, 99–106.

  • Lv, J. (2019). Multivariate receptor models and robust geostatistics are the source of heavy metal and soils. Environmental Pollution, 244, 72–83.

  • Lv, J., Liu, Y., Zhang, Z., Dai, J., Dai, B., & Zhu, Y. (2015). Identifying the origins and spatial distributions of heavy metals in Eastern China using a multivariate and geostatistical approach. Journal of soils and sediments, 15(1), 163–178.

  • Lv, J., Liu, Y., Zhang, Z., Zhou, R., & Zhu, Y. (2015). Distinguishing anthropogenic and natural sources of trace elements in soils undergoing recent 10-year rapid urbanization: a case of Donggang, Eastern China. Environmental Science and Pollution Research, 22(14), 10539–10550.

  • Qiu, L., Wang, K., Long, W., Wang, K., Hu, W., & amp; Amable, GS, . (2016). A comparative assessment of influences of human impacts on soil Cd based on stepwise linear regression, classification and regression tree, and random forest models. PLoS ONE, 11(3), e0151131.

  • Sawut, R., Kasim, N., Abliz, A., Hu, L., Yalkun, A., Maihemuti, B., & Qingdong, S. (2018). Possibility of optimized indications for assessment of heavy metal contents in soil around an open pit coal mine area. International Journal of Applied Earth Observation and Geoinformation, 73, 14–25.

  • Sun, C., Liu, J., Wang, Y., Sun, L., & Yu, H. (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui. Northeast China. Chemosphere, 92(5), 517–523.

  • Szopka, K., Karczewska, A., Jezierski, P., & Kabała, C. (2013). Spatial distribution of lead in the surface layers of mountain forest soils, an example from the Karkonosze National Park, Poland. Geoderma, 192, 259–268.

  • Tian, K., Huang, B., Xing, Z., & & Hu, W. . (2017). Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecological indicators, 72, 510–520.

  • Timofeev, I., Kosheleva, N., & Kasimov, N. (2018). Contamination of soils by potentially toxic elements in the impact zone of tungsten-molybdenum ore mine in the Baikal region: A survey and risk assessment. Science of the total environment, 642, 63–76.

  • Wang, H., & Lu, S. (2011). Spatial distribution, source identification and affecting factors of heavy metals contamination in urban-suburban soils of Lishui city. China. Environmental Earth Sciences, 64(7), 1921–1929.

  • Wang, L., Dai, L., Li, L., & Liang, T. (2018). Multivariable cocriging prediction and source analysis of potentially toxic elements (Cr, Cu, Cd, Pb, and Zn) in surface sediments from Dongting Lake, China. Ecological Indicators, 94, 312–319.

  • Wang, L. M., Wang, Q. S., Wen, H. H., Luo, J., & Wang, S. (2019). Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicology and environmental safety, 168, 184–191.

  • Wang, Z., Hong, C., Xing, Y., Wang, K., Li, Y., Feng, L., & Ma, S. (2018). Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China. Ecotoxicology and environmental safety, 154, 329–336.

  • Wang, Z., Meng, B., Zhang, W., Bai, J., Ma, Y., & Liu, M. (2018). Multi-Target Risk Assessment of Potentially Toxic Elements in Farmland Soil Based on the Environment-Ecological-Health Effect. International journal of environmental research and public health, 15(6), 1101.

  • Wu, C., Huang, J., Minasny, B., & Zhu, H. (2017). Two-dimensional empirical mode decomposition of heavy metal spatial variation in Southeast China. Environmental Science and Pollution Research, 24(9), 8302–8314.

  • Wu, C., Wu, J., Luo, Y., Zhang, H., & Teng, Y. (2008). Statistical and geoestatistical characterization of heavy metal concentrations in a contaminated area taking into account soil map units. Geoderma, 144(1–2), 171–179.

  • Wu, C., Wu, J., Luo, Y., Zhang, H., Teng, Y., & DeGloria, S. D. (2011). Spatial interpolation of severely skewed data with several peak values by the approach of integrating kriging and triangular irregular network interpolation. Environmental Earth Sciences, 63(5), 1093–1103.

  • Xie, Y., Chen, T. B., Lei, M., Yang, J., Guo, Q. J., Song, B., & Zhou, X. Y. (2011). Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere, 82(3), 468–476.

  • Yang, L., Huang, B., Mao, M., Yao, L., Hickethier, M., & amp; Hu, W. . (2015). Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China. Environmental science and pollution research, 22(9), 6679–6686.

  • Yong, L. I. U., Huifeng, W. A. N. G., Xiaoting, L. I., & Jinchang, L. I. (2015). Heavy metal contamination of agricultural soils in Taiyuan. China. Pedosphere, 25(6), 901–909.

  • Yuan, G. L., Sun, T. H., Han, P., & Li, J. (2013). Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in a closed steel smelter: Capital Iron & Steel Factory, Beijing, China. Journal of Geochemical Exploration, 130, 15–21.

  • Zhang, J., Wang, Y., Liu, J., Liu, Q., & Zhou, Q. (2016). Multivariate and geostatistical analysis of heavy metals and their distribution in agricultural soil in Gongzhuling, Northeast China. Journal of soils and sediments, 16(2), 634–644.

  • Zhang, X., Wei, S., Sun, Q., Wadood, S. A., & amp; Guo, B. . (2018). Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle of analysis and geo statistical analysis. Ecotoxicology and environmental safety, 159, 354–362.

  • Zhao, K., Liu, X., Xu, J., & Selim, H. M. (2010). Heavy metal contaminations in a soil–rice system: identification of spatial dependence in relation to soil properties of paddy fields. Journal of Hazardous Materials, 181(1–3), 778–787.

  • Zhao, Y., Wang, Z., Sun, W., Huang, B., Shi, X., & Ji, J. (2010). Spatial interrelations and multi-scale sources of soil heavy metal variability in a typical urban–rural transition area in Yangtze River Delta region of China. Geoderma, 156(3–4), 216–227.

  • Zhong, B., Liang, T., Wang, L., & Li, K. (2014). Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China. Science of the Total Environment, 490, 422–434.

  • Zhou, J., Feng, K., Li, Y., & Zhou, Y. (2016). Factorial Kriging analysis and sources of heavy metals in soils of different land-use types in the Yangtze River Delta of Eastern China. Environmental Science and Pollution Research, 23(15), 14957–14967.

  • Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural topsoils in urban area. Environmental geology, 43(7), 795–805.

  • Romic, M., Hengl, T., Romic, D., & Husnjak, S. (2007). Representing soil pollution by heavy metals using continuous limitation scores. Computers & Geosciences, 33(10), 1316–1326.

  • Sollitto, D., Romic, M., Castrignan, A., Romic, D., & Bakic, H. (2010). Assessing heavy metal contamination in Zagreb region (Northwest Croatia) using multivariate geostatistics. CATENA, 80(3), 182–194.

  • Stazi, S. R., Antonucci, F., Pallottino, F., Costa, C., Marabottini, R., Petruccioli, M., & Menesatti, P. (2014). Hyperspectral visible–near infrared determination of arsenic concentration in soil. Communications in soil science and plant analysis, 45(22), 2911–2920.

  • Boruvka, L., & Vacha, R. (2006). Litavka river alluvium as model heavily polluted with potentially risk elements. In Phytoremediation of Metal-contaminated Soils (pp. 267–298). Springer, Dordrecht.

  • Gholizadeh, A., Borůvka, L., Vašát, R., Saberioon, M., Klement, A., Kratina, J., & Drábek, O. (2015). Estimation of potential toxic elements contamination in anthropogenic soils on brown coal mining dumpsite by reflectance spectroscopy: A case study. PLoS ONE, 10(2), e0117457.

  • Kváčová, M., Ash, C., Borůvka, L., Pavlí, L., Nikod, A., Němeček, K., & Drábek, O. (2015). Content of potentially toxic elements in forest soils of the Jizera Mountains Region. Environmental Modeling & amp; Evaluation , 20 (3), 183–195.

  • El Nemr, A., Khaled, A., & El Sikaily, A. (2006). Distribution and statistical analysis of leachable and total heavy metals in the sediments of the Suez Gulf. Environmental monitoring and assessment, 118(1–3), 89–112.

  • Omran, E. S. E. (2016). Inference model to predict heavy metals of Bahr El Baqar soils, Egypt using spectroscopy and chemometrics technique. Modeling Earth Systems and Environment, 2(4), 1–17.

  • Buttafuoco, G., Tarvainen, T., Jarva, J., & Guagliardi, I. (2016). Spatial variability and trigger values of arsenic in the surface urban soils of the cities of Tampere and Lahti. Finland. Environmental Earth Sciences, 75(10), 896.

  • Bourennane, H., Douay, F., Sterckeman, T., Villanneau, E., Ciesielski, H., King, D., & Baize, D. (2010). Mapping of anthropogenic trace elements input in agricultural topsoil from Northern France using enrichment factors. Geoderma, 157(3–4), 165–174.

  • Fritsch, C., Giraudoux, P., Curdassier, M., Douay, F., Raoul, F., Pruvot, C., & amp; Scheifler, R. . (2010). Spatial distribution of metals in smelter-impacted soils of woody habitats: Influence of landscape and soil properties, and risk for wildlife. Chemosphere, 81(2), 141–155.

  • Saby, N., Arrouays, D., Boulonne, L., Jolivet, C., & Pochot, A. (2006). Geostatistical assessment of Pb in soil around Paris. France. Science of the total environment, 367(1), 212–221.

  • Salvador-Blanes, S., Cornu, S., Bourennane, H., & King, D. (2006). Controls of the spatial variability of Cr concentration in topsoils of a central French landscape. Geoderma, 132(1–2), 143–157.

  • Lacarce, E., Saby, NP, Martin, MP, Marchant, BP, Boulonne, L. Mapping soil Pb stocks and availability in mainland France combining regression trees with robust geostatistics. Geoderma , 170 , 359–368.

  • Altfelder, S., Beyer, C., Duijnisveld, W. H., Schneider, J., & Streck, T. (2002). Distribution of Cd in the vicinity of a metal smelter: Interpolation of soil Cd concentrations with regard to regulative limits. Journal of Plant Nutrition and Soil Science, 165(6), 697–705.

  • Anagu, I., Ingwersen, J., Utermann, J., & Streck, T. (2009). Estimation of heavy metal sorption in German soils using artificial neural networks. Geoderma, 152(1–2), 104–112.

  • Akoto, O., Bortey-Sam, N., Ikenaka, Y., Nakayama, S. M., Baidoo, E., Yohannes, Y. B., & Ishizuka, M. (2017). Contamination Levels and Sources of Heavy Metals and a Metalloid in Surface Soils in the Kumasi Metropolis. Ghana. Journal of Health and Pollution, 7(15), 28–39.

  • Argyraki, A., & Kelepertzis, E. (2014). Urban soil geochemistry in Athens, Greece. Science of the Total Environment, 482, 366–377.

  • Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: insights from Argolida basin, Peloponnese, Greece. Geoderma, 221, 82–90.

  • Kelepertzis, E., & Argyraki, A. (2015). Geochemical associations for evaluation of potential harmful elements in urban soils: lessons learn from Athens, Greece. Applied Geochemistry, 59, 63–73.

  • Korre, A., Durucan, S., & amp; Koutroumani, A. . (2002). Quantitative-spatial assessment of risks associated with high Pb loads in soils around Lavrio. Greece. Applied Geochemistry, 17(8), 1029–1045.

  • Chan, L. S., & sedimentNg, SL, Davis, AM, Yim, WWS, & Yeung, CH, . (2001). Magnetic properties and heavy-metal contents of contaminated seabed sediments of Penny’s Bay. Hong Kong. Marine Pollution Bulletin, 42(7), 569–583.

  • Zhou, F., Guo, H., & Liu, L. (2007). Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong. Environmental geology, 53(2), 295–305.

  • Zhou, F., Guo, H., & Hao, Z. (2007). Spatial distribution of heavy metals in Hong Kong’s marine sediments and their human impacts: a GIS-based chemometric approach. Marine Pollution Bulletin, 54(9), 1372–1384.

  • Lee, C. S. L., Li, X., Shi, W., Cheung, S. C. N., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Science of the Total Environment, 356(1–3), 45–61.

  • Li, X., Lee, S. L., Wong, S. C., Shi, W., & Thornton, I. (2004). The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environmental pollution, 129(1), 113–124.

  • Pásztor, L., Szabó, K. Z., Szatmári, G., Laborczi, A., & Horváth, Á. (2016). Mapping geogenic radon potential by regression kriging. Science of the total environment, 544, 883–891.

  • Chabukdhara, M., & Nema, A. K. (2013). Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: probabilistic health risk approach. Ecotoxicology and Environmental Safety, 87, 57–64.

  • Chakraborty, S., Li, B., Deb, S., Paul, S. W., & DC, & Das, BS, . (2017). Predicting soil arsenic pools by visible near diffraction reflectance spectroscopy. Geoderma, 296, 30–37.

  • Chakraborty, S., Weindorf, D. C., Deb, S., Li, B., Paul, S., Choudhury, A., & Ray, D. P. (2017). Rapid assessment of regional soil arsenic pollution risk via diffusion reflectance spectroscopy. Geoderma, 289, 72–81.

  • Amini, MANOUCHEHR; Continuous soil pollution mapping using fuzzy logic and spatial interpolation. Geoderma, 124 (3–4), 223–233.

  • Ayoubi, S., Jabbari, M., & amp; Khademi, H. (2018). Multiple linear modeling of soil properties, magnetic susceptibility and heavy metals in various land uses. Modeling Earth Systems and Environment , 1–11.

  • Bastami, K. D., Bagheri, H., Haghparast, S., Soltani, F., Hamzehpoor, A., & Bastami, M. D. (2012). Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay. Iran. Marine pollution bulletin, 64(12), 2877–2884.

  • Dayani, M., & Mohammadi, J. (2010). Geostatistical assessment of Pb, Zn and Cd contamination in near-surface soils of the urban-mining transitional region of Isfahan. Iran. Pedosphere, 20(5), 568–577.

  • Delavar, M. A., & Safari, Y. (2016). Spatial distribution of heavy metals in Zinc Town, northwest Iran. International Journal of Environmental Science and Technology, 13(1), 297–306.

  • Ghanbarpour, M. R., Goorzadi, M., & Vahabzade, G. (2013). Spatial variability of heavy metals in surficial sediments: Tajan River Watershed. Iran. Sustainability of Water Quality and Ecology, 1, 48–58.

  • Hani, A., & Pazira, E. (2011). Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran. Iran. Environmental monitoring and assessment, 176(1–4), 677–691.

  • Hasani, S., Asghari, O., Ardejani, F. D., & Yousefi, S. (2017). Spatial modeling of hazardous elements at a waste dump using a geostatistical approach: a case study of Sarcheshmeh copper mine. Iran. Environmental Earth Science, 76(15), 532.

  • Keshavarzi, B., Abbasi, S., Moore, F., Mehravar, S., Sorooshian, A., Soltani, N., & Najmeddin, A. (2018). Contamination level, source identification and risk assessment of potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in street dust of an important commercial center in Iran. Environmental management, 62(4), 803–818.

  • Khosravi, V., Ardejani, F. D., Yousefi, S., & Aryafar, A. (2018). Monitoring soil lead and zinc contents by combination of spectroscopy with extreme learning machine and other data mining methods. Geoderma, 318, 29–41.

  • Krami, L. K., Amiri, F., Sefiyanian, A., Shariff, A. R. B. M., Tabatabaie, T., & Pradhan, B. (2013). Spatial patterns of heavy metals in soil under different geological structures and land uses for assessing metal enrichments. Environmental monitoring and assessment, 185(12), 9871–9888.

  • Najmeddin, A., Keshavarzi, B., Moore, F., & Lahijanzadeh, A. (2018). Source and health risk assessment of potential toxic elements in road dust from urban industrial areas of Ahvaz megacity. Iran. Environmental Geochemistry and Health, 40(4), 1187–1208.

  • Piroozfar, P., Alipour, S., Modabberi, S., & Cohen, D. (2018). Application of Geochemistry and VNIR Spectroscopy in Mapping Heavy Metal Pollution of Stream Sediments in the Takab Mining Area, NW of Iran. Acta Geologica Sinica-English Edition, 92(6), 2382–2394.

  • Sakizadeh, M., Martín, J. A. R., Zhang, C., Sharafabadi, F. M., & Ghorbani, H. (2018). Trace elements concentrations in soil, desert-adapted and non-desert plants in central Iran: Spatial patterns and uncertainty analysis. Environmental pollution, 243, 270–281.

  • Sakizadeh, M., Mirzaei, R., & Ghorbani, H. (2015). The extent and prediction of heavy metal pollution in soils of Shahrood and Damghan. Iran. Bulletin of environmental contamination and toxicology, 95(6), 770–776.

  • Sakizadeh, M., Mirzaei, R., & Ghorbani, H. (2017). Support vector machine and artificial neural network to model soil pollution: a case study in Semnan Province. Iran. Neural Computing and Applications, 28(11), 3229–3238.

  • Sakizadeh, M., Sattari, M. T., & Ghorbani, H. (2017). A new method to consider spatial risk assessment of cross-correlated heavy metals using geo-statistical simulation. Journal of Mining and Environment, 8(3), 373–391.

  • Soffianian, AR, Bakir, HB, & Khodakarami, L(2015)..Evaluation of heavy metals concentration in soil using GIS, RS and Geostatistics

  • Yousefi, G., Homaee, M., & amp; Norouzi, AA, . (2018). Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy. Environmental Monitoring and Assessment, 190(9), 513.

  • McGrath, D., Zhang, C., & Carton, O. T. (2004). Geostatistical analysis and harzard assessment on soil lead in Silvermines area. Ireland. Environmental Pollution, 127(2), 239–248.

  • McIlwaine, R., Doherty, R., Cox, S. F., & Cave, M. (2017). The relationship between historical development and potentially toxic element concentrations in urban soils. Environmental pollution, 220, 1036–1049.

  • Meerschman, E., Cockx, L., & Van Meirvenne, M. (2011). A geostatistical two-phase sampling strategy to map soil heavy metal concentrations in a former war zone. European journal of soil science, 62(3), 408–416.

  • Zhang, C. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway. Ireland. Environmental pollution, 142(3), 501–511.

  • Zhang, C., Tang, Y., Luo, L., & Xu, W. (2009). Outlier identification and visualization for Pb concentrations in urban soils and its implications for potential contaminated land identification. Environmental Pollution, 157(11), 3083–3090.

  • Albanese, S., De Vivo, B., Lima, A., Cicchella, D., Civitillo, D., & Cosenza, A. (2010). Geochemical baselines and risk assessment of the Bagnoli brownfield site coastal sea sediments (Naples, Italy). Journal of Geochemical Exploration, 105(1–2), 19–33.

  • Ballabio, C., & Comolli, R. (2010). Mapping Heavy Metal Content in Multi-Kernel SVR and LiDAR Derived Data. In Digital Soil Mapping (pp. 205–216). Springer, Dordrecht.

  • Bertazzon, S., Micheletti, C., Critto, A., & Marcomini, A. (2006). Spatial analysis in ecological risk assessment: Pollutant bioaccumulation in clams Tapes philipinarum in the Venetian lagoon (Italy). Computers, environment and urban systems, 30(6), 880–904.

  • Covelli, S., Faganeli, J., Horvat, M., & Brambati, A. (2001). Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (Gulf of Trieste, northern Adriatic sea). Applied Geochemistry, 16(5), 541–558.

  • Guagliardi, I., Cicchella, D., & De Rosa, R. (2012). A geostatistical approach to assessing concentration and spatial distribution of heavy metals in urban soils. Water, Air, & Soil Pollution, 223(9), 5983–5998.

  • Guagliardi, I., Cicchella, D., De Rosa, R., & Buttafuoco, G. (2015). Assessment of lead pollution in topsoils of a southern Italy area: analysis of urban and peri-urban environment. Journal of Environmental Sciences, 33, 179–187.

  • Guagliardi, I., Rovella, N., Apollaro, C., Bloise, A., De Rosa, R., Scarciglia, F., & Buttafuoco, G. (2016). Modelling seasonal variations of natural radioactivity in soils: A case study in southern Italy. Journal of Earth System Science, 125(8), 1569–1578.

  • Imperato, M., Adamo, P., Naimo, D., Arienzo, M., Stanzione, D., & Violante, P. (2003). Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental pollution, 124(2), 247–256.

  • Imrie, C. E., Korre, A., Munoz-Melendez, G., Thornton, I., & Durucan, S. (2008). Application of factorial kriging analysis to the FOREGS European topsoil geochemistry database. Science of the total environment, 393(1), 96–110.

  • Lancianese, V., & Dinelli, E. (2015). Different Spatial Methods in Regional Geochemical Mapping at High Density Sampling: An Application on the Sediment of Romagna Apennines, Northern Italy. Journal of Geochemical Exploration, 154, 143–155.

  • Petrik, A., Thiombane, M., Albanese, S., Lima, A., & De Vivo, B. (2018). Source patterns of Zn, Pb, Cr and Ni potentially toxic elements (PTEs) through compositional discrimination analysis: A case study on the Campanian topsoil data. Geoderma, 331, 87–99.

  • Poggio, L., & Vrščaj, B. (2009). A GIS-based human health risk assessment for urban green space planning — An example from Grugliasco (Italy). Science of the total environment, 407(23), 5961–5970.

  • Ungaro, F., Ragazzi, F., Cappellin, R., & Giandon, P. (2008). Arsenic concentration in the soils of the Brenta Plain (Northern Italy): mapping the probability of exceeding contamination thresholds. Journal of Geochemical Exploration, 96(2–3), 117–131.

  • Vaccaro, S., Sobiecka, E., Contini, S., Locoro, G., Free, G., & Gawlik, B. M. (2007). The application of positive matrix factorization in the analysis, characterisation and detection of contaminated soils. Chemosphere, 69(7), 1055–1063.

  • Choe, E., Kim, K. W., Bang, S., Yoon, I. H., & Lee, K. Y. (2009). Qualitative analysis and mapping of heavy metals in abandoned Au – Ag mines using NIR spectroscopy. Environmental geology, 58(3), 477–482.

  • Hwang, C. K., Cha, J. M., Kim, K. W., & Lee, H. K. (2001). Application of multivariate statistical analysis and geographic information system to trace element in Chungnam Coal Mine area. Korea. Applied Geochemistry, 16(11–12), 1455–1464.

  • Suh, J., Lee, H., & Choi, Y. (2016). A rapid, accurate, and efficient method to map heavy metal-contaminated soils of abandoned mine sites using converted portable XRF data and GIS. International journal of environmental research and public health, 13(12), 1191.

  • Praveena, S. M. (2019). Spatial eco-risk assessment and prediction of heavy metal pollution in surface soil: a preliminary assessment of an urban area from a developing country. Toxin Reviews, 38(2), 135–142.

  • Castro-Larragoitia, J., Kramar, U., Monroy-Fernández, M. G., Viera-Décida, F., & García-González, E. G. (2013). Heavy metal and arsenic dispersion in a copper-skarn mining district in a Mexican semi-arid environment: sources, pathways and fate. Environmental earth sciences, 69(6), 1915–1929.

  • Chiprés, J. A., Salinas, J. C., Castro-Larragoitia, J., & Monroy, M. G. (2008). Geochemical mapping of major and trace elements in soils from the Altiplano Potosino, Mexico: a multi-scale comparison. Geochemistry: Exploration, Environment, Analysis, 8(3–4), 279–290.

  • Cortés, J. L., Bautista, F., Delgado, C., Quintana, P., Aguilar, D., García, A., ... & Gogichaishvili, A. (2017). Spatial distribution of heavy metals in urban dust from Ensenada, Baja California, Mexico. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 23(1), 47–60.

  • Covarrubias, S. A., Flores de la Torre, J. A., Maldonado Vega, M., Avelar González, F. J., & Peña Cabriales, J. J. (2018). Spatial Variability of Heavy Metals in Soils and Sediments of “La Zacatecana” Lagoon, Mexico. Applied and Environmental Soil Science, 2018.

  • Ihl, T., Bautista, F., Cejudo, R., Delgado, C., Quintana, P., Aguilar, D., & Gogichaishvili, A. (2015). Concentration of toxic elements in topsoils of the metropolitan area of Mexico City: a spatial analysis using Ordinary kriging and Indicator kriging. Rev. Int. Contam. Ambie, 31(1), 47–62.

  • Meza-Montenegro, M. M., Gandolfi, A. J., Santana-Alcántar, M. E., Klimecki, W. T., Aguilar-Apodaca, M. G., Del Río-Salas, R., & Meza-Figueroa, D. (2012). Metals in residential soils and cumulative risk assessment in Yaqui and Mayo agricultural valleys, northern Mexico. Science of the total environment, 433, 472–481.

  • Morton-Bermea, O., Hernández-Álvarez, E., González-Hernández, G., Romero, F., Lozano, R., & Beramendi-Orosco, L. E. (2009). Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 101(3), 218–224.

  • Razo, I., Carrizales, L., Castro, J., Díaz-Barriga, F., & Monroy, M. (2004). Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water, Air, and Soil Pollution, 152(1–4), 129–152.

  • Rodríguez-Salazar, M. T., Morton-Bermea, O., Hernández-Alvarez, E., Lozano, R., & Tapia-Cruz, V. (2011). The study of metal contamination in urban topsoils of Mexico City using GIS. Environmental Earth Sciences, 62(5), 899–905.

  • Salas-Luevano, M. A., Manzanares-Acuna, E., Letechipia-de Leon, C., Hernandez-Davila, V. M., & Vega-Carrillo, H. R. (2011). Lead concentration in soil from an old mining town. Journal of Radioanalytical and Nuclear Chemistry, 289(1), 35–39.

  • Santos-Santos, E., Yarto-Ramírez, M., Gavilán-García, I., Castro-Díaz, J., Gavilán-García, A., Rosiles, R., & López-Villegas, T. (2006). Analysis of arsenic, lead and mercury in farming areas with mining contaminated soils at Zacatecas, Mexico. Journal of the Mexican Chemical Society, 50(2), 57–63.

  • Timofeev, I. V., Kosheleva, N. E., Kasimov, N. S., Gunin, P. D., & Sandag, E. A. (2016). Geochemical transformation of soil cover in copper-molybdenum mining areas (Erdenet, Mongolia). Journal of soils and sediments, 16(4), 1225–1237.

  • El Badaoui, H., Abdallaoui, A., Manssouri, I., & Lancelot, L. (2013). Application of artificial neural networks of MLP type for the prediction of heavy metals in Moroccan aquatic sediments. International Journal of Computational Engineering Research, 3(6), 75–81.

  • Khalil, A., Hanich, L., Bannari, A., Zouhri, L., Pourret, O., & Hakkou, R. (2013). Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: pre-work of geochemical process modeling with numerical models. Journal of Geochemical Exploration, 125, 117–129.

  • Brus, D. J., De Gruijter, J. J., Walvoort, D. J. J., De Vries, F., Bronswijk, J. J. B., Römkens, P. F. A. M., & De Vries, W. (2002). Mapping the probability of exceeding critical thresholds for cadmium concentrations in soils in the Netherlands. Journal of Environmental Quality, 31(6), 1875–1884.

  • Cattle, J. A., McBratney, A., & Minasny, B. (2002). Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination. Journal of Environmental Quality, 31(5), 1576–1588.

  • Nickel, S., Hertel, A., Pesch, R., Schröder, W., Steinnes, E., & Uggerud, H. T. (2014). Modeling and mapping of spatio-temporal trends in heavy metal accumulation in moss and natural surface soil monitored 1990–2010 throughout Norway by multivariate generalized linear models and geostatistics. Atmospheric Environment, 99, 85–93.

  • Alam, N., Ahmad, S. R., Qadir, A., Ashraf, M. I., Lakhan, C., & Lakhan, V. C. (2015). Use of statistical and GIS techniques for assessment and prediction of heavy metals in soils of Lahore City. Pakistan. Environmental Monitoring and Assessment, 187(10), 636.

  • Ali, S. M., & Malik, R. N. (2011). Spatial distribution of metals in top soils of Islamabad City. Pakistan. Environmental monitoring and assessment, 172(1–4), 1–16.

  • Kostka, A., & Leśniak, A. (2020). Spatial and geochemical aspects of heavy metal distribution in lacustrine sediments, using the example of Lake Wigry (Poland). Chemosphere, 240, 124879.

  • Antunes, I. M. H. R., Albuquerque, M. T. D., & Roque, N. (2018). Spatial environmental risk evaluation of potential toxic elements in stream sediments. Environmental geochemistry and health, 40(6), 2573–2585.

  • Candeias, C., Da Silva, E. F., Salgueiro, A. R., Pereira, H. G., Reis, A. P., Patinha, C., & Ávila, P. H. (2011). Assessment of soil contamination by potentially toxic elements in the Aljustrel mining area in order to implement soil reclamation strategies. Land Degradation & Development, 22(6), 565–585.

  • Reis, A. P., Da Silva, E. F., Sousa, A. J., Matos, J., Patinha, C., Abenta, J., & Fonseca, E. C. (2005). Combining GIS and stochastic simulation to estimate spatial patterns of variation for lead at the Lousal mine. Portugal. Land degradation & development, 16(2), 229–242.

  • Reis, A. P., Sousa, A. J., Silva, E. F. D., & Fonseca, E. C. (2005). Application of geostatistical methods to arsenic data from soil samples of the Cova dos Mouros mine (Vila Verde-Portugal). Environmental geochemistry and health, 27(3), 259–270.

  • Salgueiro, A. R., Ávila, P. F., Pereira, H. G., & Oliveira, J. S. (2008). Geostatistical estimation of chemical contamination in stream sediments: The case study of Vale das Gatas mine (northern Portugal). Journal of Geochemical Exploration, 98(1–2), 15–21.

  • Tavares, M. T., Sousa, A. J., & Abreu, M. M. (2008). Ordinary kriging and indicator kriging in the cartography of trace elements contamination in São Domingos mining site (Alentejo, Portugal). Journal of Geochemical Exploration, 98(1–2), 43–56.

  • Peng, Y., Kheir, R., Adhikari, K., Malinowski, R., Greve, M., Knadel, M., & Greve, M. (2016). Digital mapping of toxic metals in Qatari using remote sensing and ancillary data. Remote Sensing, 8(12), 1003.

  • Chalov, S. R., Jarsjö, J., Kasimov, N. S., Romanchenko, A. O., Pietroń, J., Thorslund, J., & Promakhova, E. V. (2015). Spatio-temporal variation of sediment transport in the Selenga River Basin. Mongolia and Russia. Environmental Earth Sciences, 73(2), 663–680.

  • Komnitsas, K., & Modis, K. (2006). Soil risk assessment of As and Zn contamination in a coal mining region using geostatisretics. Science of the Total Environment, 371(1–3), 190–196.

  • Sergeev, A. P., Buevich, A. G., Baglaeva, E. M., & Shichkin, A. V. (2019). Combining spatial autocorrelation with machine learning increases prediction accuracy of soil heavy metals. CATENA, 174, 425–435.

  • Sergeev, A. P., Tarasov, D. A., Buevich, A. G., Subbotina, I. E., Shichkin, A. V., Sergeeva, M. V., & Lvova, O. A. (2017, June). High variation subarctic topsoil pollutant concentration prediction using neural network residual kriging. In AIP Conference Proceedings (Vol. 1836, No. 1, p. 020023). AIP Publishing.

  • Shichkin, AV, Buevich, AG, & amp; Sergeev, AP (2018, July). Comparison of artificial neural network, random forest and random perceptron forest. In AIP Conference Proceedings (Vol. 1982, No. 1, p. 020005). AIP Publishing.

  • Subbotina, I. E., Buevich, A. G., Shichkin, A. V., Sergeev, A. P., Tarasov, D. A., Tyagunov, A. G., ... & Baglaeva, E. M. (2018, July). Multilayer perceptron, generalized regression neural network, and hybrid model in predicting the spatial distribution of impurity in the topsoil of urbanized area. In AIP Conference Proceedings (Vol. 1982, No. 1, p. 020004). AIP Publishing.

  • Tarasov, D. A., Buevich, A. G., Sergeev, A. P., Shichkin, A. V., & Baglaeva, E. M. (2017, June). Topsoil pollution forecasting using artificial neural networks on the example of the abnormally distributed heavy metal at Russian subarctic. In AIP Conference Proceedings (Vol. 1836, No. 1, p. 020024). AIP Publishing.

  • Tarasov, D. A., Buevich, A. G., Sergeev, A. P., & Shichkin, A. V. (2018). High variation topsoil pollution forecasting in the Russian Subarctic: Using artificial neural networks combined with residual kriging. Applied Geochemistry, 88, 188–197.

  • Dragovic, R., Gajic, B., Dragovic, S., Kordevic, M., Kordevic, M., Mihailovic, N., & Onjia, A. (2014). Assessment of the Impact of Geographical Factors on the Spatial Distribution of Heavy Metals in the Steel Production Facility in Smederevo (Serbia). Journal of cleaner production, 84, 550–562.

  • Dragovic, S., Iuji, M., Slavkovic-Beškoski, L., Gajic, B., Bajat, B., Kilibarda, M., & Onjia, A. (2013). Trace element distribution in surface soils from coal burning power production area: A power plant site in Serbia. CATENA, 104, 288–296.

  • Finzgar, N., Jez, E., Voglar, D., & Lestan, D. (2014). Spatial distribution of metal contamination before and after remediation in the Meza Valley, Slovenia. Geoderma, 217, 135–143.

  • De Villiers, S., Thiart, C., & Basson, N. C. (2010). Identification of sources of environmental lead in South Africa from surface soil geochemical maps. Environmental geochemistry and health, 32(5), 451–459.

  • Kim, H. R., Kim, K. H., Yu, S., Moniruzzaman, M., Hwang, S. I., Lee, G. T., & Yun, S. T. (2019). Better assessment of the distribution of As and Pb in soils in a former smelting area, using ordinary co-kriging and sequential Gaussian co-simulation of portable X-ray fluorescence (PXRF) and ICP-AES data. Geoderma, 341, 26–38.

  • Kim, S. M., Choi, Y., Yi, H., & amp; Park, HD, . (2017). Geostatistical prediction of heavy metal concentrations in streams considering the stream networks. Environmental Earth Sciences, 76(2), 72.

  • Acosta, J. A., Faz, A., Martínez-Martínez, S., Zornoza, R., Carmona, D. M., & Kabas, S. (2011). Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation. Journal of Geochemical Exploration, 109(1–3), 8–17.

  • Choe, E., van der Meer, F., van Ruitenbeek, F., van der Werff, H., de Smeth, B., & Kim, K. W. (2008). Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and remote sensing: A case study of Rodalquilar mining area. SE Spain. Remote Sensing of Environment, 112(7), 3222–3233.

  • Delgado, J., Nieto, J. M., & Boski, T. (2010). Analysis of the spatial variation of heavy metals in the Guadiana Estuary sediments (SW Iberian Peninsula) based on GIS-mapping techniques. Estuarine, Coastal and Shelf Science, 88(1), 71–83.

  • Fernández, S., Cotos-Yáñez, T., Roca-Pardiñas, J., & Ordóñez, C. (2018). Geographically weighted principal components analysis to assess diffuse pollution sources of soil heavy metal: application to rough mountain areas in Northwest Spain. Geoderma, 311, 120–129.

  • Franco, C., Soares, A., & Delgado, J. (2006). Geostatistical modeling of heavy metal contamination in the topsoil of Guadiamar river margins (S Spain) using a stochastic simulation technique. Geoderma, 136(3–4), 852–864.

  • Gabarron, M., Faz, A., Martínez-Martínez, S., Zornoza, R., & Acosta, J. A. (2017). Assessment of metals behavior in industrial soil using sequential extraction, multivariable analysis and geostatistical approach. Journal of Geochemical Exploration, 172, 174–183.

  • Gallego, J. L., Ordóñez, A., & Loredo, J. (2002). Investigation of trace element sources from an industrialized area (Aviles, northern Spain) using multivariate statistical methods. Environment International, 27(7), 589–596.

  • Kemper, T., & Sommer, S. (2002). Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environmental science & technology, 36(12), 2742–2747.

  • Martín, J. A. R., Arias, M. L., & Corbí, J. M. G. (2006). Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environmental pollution, 144(3), 1001–1012.

  • Martín, J. R., Ramos-Miras, J. J., Boluda, R., & Gil, C. (2013). Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma, 200, 180–188.

  • Morillo, J., Usero, J., & Gracia, I. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55(3), 431–442.

  • Nadal, M., Schuhmacher, M., & Domingo, J. L. (2004). Metal pollution of soils and vegetation in an area with petrochemical industry. Science of the total environment, 321(1–3), 59–69.

  • Rodriguez, J. A., Nanos, N., Grau, J. M., Gil, L., & Lopez-Arias, M. (2008). Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere, 70(6), 1085–1096.

  • Santos-Francés, F., Martínez-Graña, A., Zarza, C. Á., Sánchez, A. G., & Rojo, P. A. (2017). Spatial distribution of heavy metals and the environmental quality of soil in the Northern Plateau of Spain by geostatistical methods. International journal of environmental research and public health, 14(6), 568.

  • Kishné, A. S., Bringmark, E., Bringmark, L., & Alriksson, A. (2003). Comparison of ordinary and lognormal kriging on skewed data of total cadmium in forest soils of Sweden. Environmental monitoring and assessment, 84(3), 243–263.

  • Hofer, C., Borer, F., Bono, R., Kayser, A., & Papritz, A. (2013). Predicting topsoil heavy metal content of parcels of land: An empirical validation of customary and constrained lognormal block kriging and conditional simulations. Geoderma, 193, 200–212.

  • Schnabel, U., & Tietje, O. (2003). Explorative data analysis of heavy metal contaminated soil using multidimensional spatial regression. Environmental Geology, 44(8), 893–904.

  • Chu, H. J., Lin, Y. P., Jang, C. S., & Chang, T. K. (2010). Delineating the gambling zone of multiple soil pollutants by multivariate indicator kriging and conditioned hypercube sampling. Geoderma, 158(3–4), 242–251.

  • Juang, K. W., Chen, Y. S., & Lee, D. Y. (2004). Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environmental Pollution, 127(2), 229–238.

  • Lin, Y. P., Cheng, B. Y., Chu, H. J., Chang, T. K., & Yu, H. L. (2011). Assessing how heavy metal pollution and human activity are related by using logistic regression and kriging methods. Geoderma, 163(3–4), 275–282.

  • Lin, Y. P. (2002). Multivariate geostatistical methods to identify and map spatial variations of soil heavy metals. Environmental geology, 42(1), 1–10.

  • Lin, Y. P., Cheng, B. Y., Shyu, G. S., & Chang, T. K. (2010). Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan. Environmental Pollution, 158(1), 235–244.

  • Simasuwannarong, B., Satapanajaru, T., Khuntong, S., & Pengthamkeerati, P. (2012). Spatial distribution and risk assessment of As, Cd, Cu, Pb, and Zn in topsoil at Rayong Province, Thailand. Water, Air, & Soil Pollution, 223(5), 1931–1943.

  • Gannouni, S., Rebai, N., & Abdeljaoued, S. (2012). A spectroscopic approach to assess heavy metals. Journal of Geographic Information System, 4, 242–253.

  • Agca, N. (2015). Spatial distribution of heavy metal content in soils around an industrial area in Southern Turkey. Arabian Journal of Geosciences, 8(2), 1111–1123.

  • Ağca, N., & Özdel, E. (2014). Assessment of spatial distribution and possible sources of heavy metals in the Sariseki-Dörtyol District in Hatay Turkey. Environmental earth science, 71(3), 1033–1047.

  • CoKun, M., Steinnes, E., Frontasyeva, M. V., Sjobakk, T. E., & Demkina, S. (2006). Heavy metal pollution of the soil in the Thrace region. Turkey. Environmental monitoring and assessment, 119(1–3), 545–556.

  • Dindaroğlu, T. (2014). The use of the GIS Kriging technique to determine the spatial changes of natural radionuclide concentrations in soil and forest cover. Journal of Environmental Health Science and Engineering, 12(1), 130.

  • Karanlık, S., Ağca, N., & Yalçın, M. (2011). Spatial distribution of heavy metals content in Amik Plain (Hatay, Turkey). Environmental Monitoring and Assessment, 173(1–4), 181–191.

  • Ersoy, A., Yunsel, T. Y., & Atici, Ü. (2008). Geostatistical conditional simulation for the assessment of contaminated land by abandoned heavy metal mining. Environmental toxicology, 23(1), 96–109.

  • Ersoy, A., Yunsel, T. Y., & Cetin, M. (2004). Characterization of land contaminated by heavy metal mining using geostatistical methods. Archives of Environmental Contamination and Toxicology, 46(2), 162–175.

  • Gay, J. R., & Korre, A. (2006). A spatially-evaluated methodology for assessing risk to a population from contaminated land. Environmental Pollution, 142(2), 227–234.

  • Kirkwood, C., Cave, M., Beamish, D., Grebby, S., & Ferreira, A. (2016). A machine learning approach to geochemical mapping. Journal of Geochemical Exploration, 167, 49–61.

  • Lark, R. M., Bellamy, P. H., & Rawlins, B. G. (2006). Spatio-temporal variability of some metal concentrations in the soil of eastern England, and implications for soil monitoring. Geoderma, 133(3–4), 363–379.

  • Marchant, B. P., Tye, A. M., & Rawlins, B. G. (2011). The assessment of point-source and diffuse soil metal pollution using robust geostatistical methods: a case study in Swansea (Wales, UK). European Journal of Soil Science, 62(3), 346–358.

  • Rawlins, B. G., Lark, R. M., & O’donnell, KE, Tye, AM, & Lister, TR, . (2005). The assessment of point and diffuse metal pollution of soils from an urban geochemical survey of Sheffield. England. Soil use and management, 21(4), 353–362.

  • Zhen, J., Pei, T., & Xie, S. (2019). Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil. Science of The Total Environment, 659, 363–371.

  • Abel, M. T., Suedel, B., Presley, S. M., Rainwater, T. R., Austin, G. P., Cox, S. B., & Leftwich, B. D. (2010). Spatial distribution of lead concentrations in urban surface soils of New Orleans. Louisiana USA. Environmental geochemistry and health, 32(5), 379–389.

  • Aelion, C. M., Davis, H. T., McDermott, S., & Lawson, A. B. (2008). Metal concentrations in rural topsoil in South Carolina: potential for human health impact. Science of the total environment, 402(2–3), 149–156.

  • Bugdalski, L., Lemke, L. D., & McElmurry, S. P. (2014). Spatial Variation of Soil Lead in an Urban Community Garden: Implications for Risk-Based Sampling. Risk Analysis, 34(1), 17–27.

  • Diawara, M. M., Litt, J. S., Unis, D., Alfonso, N., Martinez, L., Crock, J. G., & Carsella, J. (2006). Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: implications for population health risk. Environmental Geochemistry and Health, 28(4), 297–315.

  • Gallagher, F. J., Pechmann, I., Bogden, J. D., Grabosky, J., & Weis, P. (2008). Soil metal concentrations and vegetative assemblage structure in an urban brownfield. Environmental Pollution, 153(2), 351–361.

  • Griffith, D. A. (2002). The geographic distribution of soil lead concentration: description and concerns. URISA Journal, 14(1), 5–14.

  • Ha, H., Olson, J. R., Bian, L., & Rogerson, P. A. (2014). Analysis of heavy metal sources in soil using kriging interpolation on principal components. Environmental science & technology, 48(9), 4999–5007.

  • Machemer, S. D., & Hosick, T. J. (2004). Determination of soil lead variability in residential soil for remediation decision making. Water, Air, and Soil Pollution, 151(1–4), 305–322.

  • Mielke, H. W., Berry, K. J., Mielke, P. W., Powell, E. T., & Gonzales, C. R. (2005). Multiple metal accumulation as a factor in learning achievement within various New Orleans elementary school communities. Environmental Research, 97(1), 67–75.

  • Mielke, H. W., Gonzales, C. R., Powell, E. T., & Mielke, P. W. (2013). Environmental and health disparities in residential communities of New Orleans: The need for soil lead intervention to advance primary prevention. Environment international, 51, 73–81.

  • Mielke, H. W., Gonzales, C., Powell, E., & Mielke, P. W. (2005). Changes of multiple metal accumulation (MMA) in New Orleans soil: Preliminary evaluation of differences between survey I (1992) and survey II (2000). International Journal of Environmental Research and Public Health, 2(2), 308–313.

  • Pandit, C. M., Filippelli, G. M., & Li, L. (2010). Estimation of heavy-metal contamination in soil using reflectance spectroscopy and partial least-squares regression. International Journal of Remote Sensing, 31(15), 4111–4123.

  • Paul, R., & Cressie, N. (2011). Lognormal block kriging for contaminated soil. European journal of soil science, 62(3), 337–345.

  • Reeves, M. K., Perdue, M., Munk, L. A., & Hagedorn, B. (2018). Predicting risk of trace element pollution from municipal roads using site-specific soil samples and remotely sensed data. Science of the Total Environment, 630, 578–586.

  • Schwarz, K., Weathers, K. C., Pickett, S. T., Lathrop, R. G., Pouyat, R. V., & Cadenasso, M. L. (2013). A comparison of three empirically based, spatially explicit predictive models of residential soil Pb concentrations in Baltimore, Maryland, USA: understanding the variability within cities. Environmental geochemistry and health, 35(4), 495–510.

  • Solt, M. J., Deocampo, D. M., & Norris, M. (2015). Spatial distribution of lead in Sacramento, California, USA. International Journal of Environmental Research and Public Health, 12(3), 3174–3187.

  • Webster, J. P., Kane, T. J., Obrist, D., Ryan, J. N., & Aiken, G. R. (2016). Estimating mercury emissions resulting from wildfire in forests of the Western United States. Science of the Total Environment, 568, 578–586.

  • Woodruff, L., Cannon, W. F., Smith, D. B., & Solano, F. (2015). The distribution of selected elements and minerals in the soil of the United States. Journal of Geochemical Exploration, 154, 49–60.

  • Wu, J., Edwards, R., He, X. E., Liu, Z., & Kleinman, M. (2010). Spatial analysis of bioavailable soil lead concentrations in Los Angeles. California. Environmental research, 110(4), 309–317.

  • Yesilonis, I. D., Pouyat, R. V., & Neerchal, N. K. (2008). Spatial distribution of metals in soils in Baltimore, Maryland: role of native parent material, proximity to major roads, housing age and screening guidelines. Environmental Pollution, 156(3), 723–731.

Download references

Acknowledgements

This study was supported by an internal PhD grant no. 21130/3131 of the Faculty of Agrobiology, Food and Natural Resources of the Czech University of Life Sciences, Prague (CZU). The support from the Ministry of Education, Youth and Sports of the Czech Republic (project No. CZ.02.1.01/0.0/0.0/16_019/0000845) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prince Chapman Agyeman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agyeman, P.C., Ahado, S.K., Borůvka, L. et al. Trend analysis of global usage of digital soil mapping models in the prediction of potentially toxic elements in soil/sediments: a bibliometric review. Environ Geochem Health 43, 1715–1739 (2021). https://doi.org/10.1007/s10653-020-00742-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00742-9

Keywords

Navigation