Skip to main content
Log in

Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Honeycomb structures have the geometry of the lattice network to allow the minimization of the amount of used material to reach minimal material cost and minimal weight. In this regard, this article deals with the frequency analysis of imperfect honeycomb core sandwich disk with multiscale hybrid nanocomposite (MHC) face sheets rested on an elastic foundation. The honeycomb core is made of aluminum due to its low weight and high stiffness. The rule of the mixture and modified Halpin–Tsai model are engaged to provide the effective material constant of the composite layers. By employing Hamilton’s principle, the governing equations of the structure are derived and solved with the aid of the generalized differential quadrature method (GDQM). Afterward, a parametric study is done to present the effects of the orientation of fibers (\(\theta_{{\text{f}}} /\pi\)) in the epoxy matrix, Winkler–Pasternak constants (\(K_{{\text{w}}}\) and \(K_{{\text{p}}}\)), thickness to length ratio of the honeycomb network (\(t_{{\text{h}}} /l_{{\text{h}}}\)), the weight fraction of CNTs, value fraction of carbon fibers, angle of honeycomb networks, and inner to outer radius ratio on the frequency of the sandwich disk. The results show that it is true that the roles of \(K_{{\text{w}}}\) and \(K_{{\text{p}}}\) are the same as an enhancement, but the impact of \(K_{{\text{w}}}\) could be much more considerable than the effect of \(K_{{\text{p}}}\) on the stability of the structure. Additionally, when the angle of the fibers is close to the horizon, the frequency of the system improves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

h, R i, and R o :

Thickness, the inner and outer radius of the disk, respectively

CNTs:

Carbon nanotubes

F and NCM:

Fiber and nanocomposite matrix, respectively

\(\rho ,E,\nu \;{\text{and}}\;G\) :

The density, Young’s modulus, Poisson’s ratio, and shear parameter, respectively

V NCM, V F :

Volume fractions of the nanocomposite matrix and fiber, respectively

l CNT, t CNT, d CNT, E CNT and V CNT :

The length, thickness, diameter, Young’s modulus, and volume fraction of carbon nanotubes, respectively

\(V_{\rm CNT}^{*}\), W CNT :

Effective volume fraction and weight fraction of the CNTs, respectively

Nt, V CNT :

Layer number and volume fraction of CNTs

\(E_{1}^{*}\) and \(E_{2}^{*}\) :

Young’s modulus in R and \(\theta\) directions, respectively

\(\nu_{12}^{*}\) and \(\nu_{21}^{*}\) :

Poisson’s ratio in R and \(\theta\) directions, respectively

\(G_{12}^{*}\) :

In-plane shear modulus

\(E_{S}\) and \(\rho_{S}\) :

Young’s modulus and mass density of the base material, which is aluminum for the honeycomb core, respectively

t m, h H, l m , and \(\theta_{{\text{h}}}\) :

The cell wall thickness, the sides of the hexagonal cell, and the angle of honeycomb core, respectively

U, V, W :

Displacement fields of a disk

u, v, w, u1, and v 1 :

The displacements of the mid-surface of the disk

\(\varepsilon_{RR}\) and \(\varepsilon_{\theta \theta }\) :

The corresponding normal strains in \(R\) and θ directions, respectively

\(\gamma_{RZ} ,\,\,\,\gamma_{R\theta } \,{\text{and}}\,\,\,\gamma_{\theta Z}\) :

The shear strain in the RZ, R\(\theta\) and \(\theta\)Z plane

U *, T *, and W * :

Corresponding strain energy of the system, kinetic energy of the system, and the work done, respectively

\(Q_{ij}\) and \(\overline{Q}_{ij}\) :

Stiffness elements, stiffness elements related to orientation angle, and the orientation angle, respectively

\(\theta_{{\text{f}}}\) :

The lamination angle concerning the disk R axis

K W and K P :

Winkler and Pasternak foundation coefficient

N r and N θ :

The number of grid points along the radial and circumferential directions, respectively

d, b, and \(\delta\) :

d As a subscript stands for the domain grid points, b as a subscript stands for boundary grid points and the displacement vector, respectively

M ij and K ij :

Components of mass and stiffness matrices, respectively

M ij * and K ij * :

Components of mass and stiffness matrices in the GDQ method, respectively

\(\omega_{n} \;{\text{and}}\,\,\overline{\omega }_{n}\) :

Dimensional and non-dimensional value of natural frequency

References

  1. Chen S, Wang G, Zuo S, Yang C (2019) Experimental investigation on microstructure and permeability of thermally treated beishan granite. J Test Eval 49(2). https://doi.org/10.1520/JTE20180879.

  2. Ye X, Wang S, Zhang S, Xiao X, Xu F (2020) The compaction effect on the performance of a compaction-grouted soil nail in sand. Acta Geotech, pp 1–13. https://doi.org/10.1007/s11440-020-01017-4

  3. Sheng D, Zhang S, Yu Z, Zhang J (2013) Assessing frost susceptibility of soils using PCHeave. Cold Reg Sci Technol 95:27–38. https://doi.org/10.1016/j.coldregions.2013.08.003

    Article  Google Scholar 

  4. Zhang S, Leng W, Zhang F, Xiong Y (2012) A simple thermo-elastoplastic model for geomaterials. Int J Plast 34:93–113. https://doi.org/10.1016/j.ijplas.2012.01.011

    Article  Google Scholar 

  5. Zhang S, Teng J, He Z, Liu Y, Liang S, Yao Y, Sheng D (2016) Canopy effect caused by vapour transfer in covered freezing soils. Géotechnique 66(11):927–940. https://doi.org/10.1680/jgeot.16.P.016

    Article  Google Scholar 

  6. Zghal S, Frikha A, Dammak F (2018) Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Compos B Eng 150:165–183

    MATH  Google Scholar 

  7. Tornabene F, Liverani A, Caligiana G (2011) FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: a 2-D GDQ solution for free vibrations. Int J Mech Sci 53(6):446–470

    Google Scholar 

  8. Frikha A, Zghal S, Dammak F (2018) Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. Aerosp Sci Technol 78:438–451

    MATH  Google Scholar 

  9. Tornabene F, Reddy J (2013) FGM and laminated doubly-curved and degenerate shells resting on nonlinear elastic foundations: a GDQ solution for static analysis with a posteriori stress and strain recovery. J Indian Inst Sci 93(4):635–688

    MathSciNet  Google Scholar 

  10. Trabelsi S, Frikha A, Zghal S, Dammak F (2019) A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Eng Struct 178:444–459

    Google Scholar 

  11. Tornabene F, Fantuzzi N, Viola E, Batra RC (2015) Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory. Compos Struct 119:67–89. https://doi.org/10.1016/j.compstruct.2014.08.005

    Article  Google Scholar 

  12. Tornabene F, Fantuzzi N, Bacciocchi M, Viola E (2016) Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos B Eng 89:187–218. https://doi.org/10.1016/j.compositesb.2015.11.016

    Article  Google Scholar 

  13. Mukhopadhyay T, Adhikari S (2016) Free-vibration analysis of sandwich panels with randomly irregular honeycomb core. J Eng Mech 142(11):06016008

    Google Scholar 

  14. Suryawanshi VJ, Pawar AC, Palekar SP, Rade KA (2020) Defect detection of composite honeycomb structure by vibration analysis technique. In: Materials Today: Proceedings

  15. Mozafari H, Najafian S (2019) Vibration analysis of foam filled honeycomb sandwich panel–numerical study. Austral J Mech Eng 17(3):191–198

    Google Scholar 

  16. Xu G-d, Zeng T, Cheng S, Wang X-h, Zhang K (2019) Free vibration of composite sandwich beam with graded corrugated lattice core. Compos Struct 229:111466

    Google Scholar 

  17. Amini A, Mohammadimehr M, Faraji A (2019) Active control to reduce the vibration amplitude of the solar honeycomb sandwich panels with CNTRC facesheets using piezoelectric patch sensor and actuator. Steel Compos Struct 32(5):671–686

    Google Scholar 

  18. Shahverdi H, Barati MR, Hakimelahi B (2019) Post-buckling analysis of honeycomb core sandwich panels with geometrical imperfection and graphene reinforced nano-composite face sheets. Mater Res Express 6(9):095017

    Google Scholar 

  19. Sobhy M (2020) Differential quadrature method for magneto-hygrothermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higher-order theory. J Sandw Struct Mater, p 1099636219900668

  20. Wang Y-j, Zhang Z-j, Xue X-m, Zhang L (2019) Free vibration analysis of composite sandwich panels with hierarchical honeycomb sandwich core. Thin-Walled Struct 145:106425

    Google Scholar 

  21. Zhang Z-j, Han B, Zhang Q-c, Jin F (2017) Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid cores. Compos Struct 171:335–344

    Google Scholar 

  22. Zhang Y, Li Y (2019) Nonlinear dynamic analysis of a double curvature honeycomb sandwich shell with simply supported boundaries by the homotopy analysis method. Compos Struct 221:110884

    Google Scholar 

  23. Keleshteri M, Asadi H, Aghdam M (2019) Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation. Thin-Walled Struct 135:453–462

    Google Scholar 

  24. Ansari R, Torabi J (2019) Nonlinear free and forced vibration analysis of FG-CNTRC annular sector plates. Polym Compos 40(S2):E1364–E1377

    Google Scholar 

  25. Keleshteri M, Asadi H, Wang Q (2017a) Postbuckling analysis of smart FG-CNTRC annular sector plates with surface-bonded piezoelectric layers using generalized differential quadrature method. Comput Methods Appl Mech Eng 325:689–710

    MathSciNet  MATH  Google Scholar 

  26. Mohammadzadeh-Keleshteri M, Asadi H, Aghdam M (2017) Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers. Compos Struct 171:100–112

    Google Scholar 

  27. Keleshteri M, Asadi H, Wang Q (2017b) Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation. Thin-Walled Struct 120:203–214

    Google Scholar 

  28. Torabi J, Ansari R (2017) Nonlinear free vibration analysis of thermally induced FG-CNTRC annular plates: Asymmetric versus axisymmetric study. Comput Methods Appl Mech Eng 324:327–347

    MathSciNet  MATH  Google Scholar 

  29. Zhao X, Li D, Yang B, Ma C, Zhu Y, Chen H (2014) Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl Soft Comput 24:585–596

    Google Scholar 

  30. Wang M, Chen H (2020) Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Applied Soft Computing 88:105946

    Google Scholar 

  31. Zhao X, Zhang X, Cai Z, Tian X, Wang X, Huang Y, Chen H, Hu L (2019) Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Comput Biol Chem 78:481–490

    Google Scholar 

  32. Xu X, Chen H-L (2014) Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput 18(4):797–807

    Google Scholar 

  33. Shen L, Chen H, Yu Z, Kang W, Zhang B, Li H, Yang B, Liu D (2016) Evolving support vector machines using fruit fly optimization for medical data classification. Knowl-Based Syst 96:61–75

    Google Scholar 

  34. Wang M, Chen H, Yang B, Zhao X, Hu L, Cai Z, Huang H, Tong C (2017) Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267:69–84

    Google Scholar 

  35. Xu Y, Chen H, Luo J, Zhang Q, Jiao S, Zhang X (2019) Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf Sci 492:181–203

    MathSciNet  Google Scholar 

  36. Chen H, Zhang Q, Luo J, Xu Y, Zhang X (2020) An enhanced Bacterial Foraging Optimization and its application for training kernel extreme learning machine. Appl Soft Comput 86:105884

    Google Scholar 

  37. Vinyas M, Harursampath D (2020) Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes. Compos Struct 253:112749

    Google Scholar 

  38. Dat ND, Quan TQ, Mahesh V, Duc ND (2020) Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment. Int J Mech Sci 186:105906

    Google Scholar 

  39. Mahesh V, Harursampath D (2020) Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading. Mech Based Des Struct Mach, pp 1–25. https://doi.org/10.1080/15376494.2020.1805059

  40. Mahesh V, Harursampath D (2020) Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM. Eng Comput, pp 1–23. https://doi.org/10.1007/s00366-020-01098-5

  41. Vinyas M (2020a) On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT. Compos Struct 240:112044

    Google Scholar 

  42. Adjerid S, Weinhart T (2009) Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems. Comput Methods Appl Mech Eng 198(37–40):3113–3129

    MathSciNet  MATH  Google Scholar 

  43. Rafiee M, Liu X, He X, Kitipornchai S (2014) Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates. J Sound Vib 333(14):3236–3251

    Google Scholar 

  44. Ghabussi A, Ashrafi N, Shavalipour A, Hosseinpour A, Habibi M, Moayedi H, Babaei B, Safarpour H (2019) Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1705166

    Article  Google Scholar 

  45. Shokrgozar A, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1719509

    Article  Google Scholar 

  46. Shariati A, Ghabussi A, Habibi M, Safarpour H, Safarpour M, Tounsi A, Safa M (2020) Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin-Walled Struct 154:106840. https://doi.org/10.1016/j.tws.2020.106840

    Article  Google Scholar 

  47. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  48. Safarpour M, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM. Thin-Walled Struct 150:106683. https://doi.org/10.1016/j.tws.2020.106683

    Article  Google Scholar 

  49. Jermsittiparsert K, Ghabussi A, Forooghi A, Shavalipour A, Habibi M, won Jung D, Safa M, (2020) Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1748052

    Article  Google Scholar 

  50. Ghabussi A, Habibi M, NoormohammadiArani O, Shavalipour A, Moayedi H, Safarpour H (2020) Frequency characteristics of a viscoelastic graphene nanoplatelet–reinforced composite circular microplate. J Vib Control, p 1077546320923930. https://doi.org/10.1177/1077546320923930

  51. Moayedi H, Darabi R, Ghabussi A, Habibi M, Foong LK (2020) Weld orientation effects on the formability of tailor welded thin steel sheets. Thin-Walled Struct 149:106669. https://doi.org/10.1016/j.tws.2020.106669

    Article  Google Scholar 

  52. Ghabussi A, Marnani JA, Rohanimanesh MS (2020) Improving seismic performance of portal frame structures with steel curved dampers. In: Structures, vol 24. Elsevier, pp 27–40. https://doi.org/10.1016/j.istruc.2019.12.025

  53. Al-Furjan MSH, Habibi M, Dw J, Sadeghi S, Safarpour H, Tounsi A, Chen G (2020) A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel. Eng Comput. https://doi.org/10.1007/s00366-020-01130-8

    Article  Google Scholar 

  54. Al-Furjan M, Habibi M, Chen G, Safarpour H, Safarpour M, Tounsi A (2020a) Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112737

    Article  Google Scholar 

  55. Li J, Tang F, Habibi M (2020) Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure. Eng Comput. https://doi.org/10.1007/s00366-020-01110-y

    Article  Google Scholar 

  56. Habibi M, Hashemi R, Sadeghi E, Fazaeli A, Ghazanfari A, Lashini H (2016) Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures. J Mater Eng Perform 25(2):382–389

    Google Scholar 

  57. Habibi M, Hashemi R, Tafti MF, Assempour A (2018) Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding. J Manuf Process 31:310–323

    Google Scholar 

  58. Al-Furjan M, Habibi M, Safarpour H (2020) Vibration control of a smart shell reinforced by graphene nanoplatelets. Int J Appl Mech. https://doi.org/10.1142/S1758825120500660

    Article  Google Scholar 

  59. Liu Z, Su S, Xi D, Habibi M (2020) Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method. Mech Based Des Struct Mach, pp 1–26. https://doi.org/10.1080/15397734.2020.1784201

  60. Shi X, Li J, Habibi M (2020) On the statics and dynamics of an electro-thermo-mechanically porous GPLRC nanoshell conveying fluid flow. Mech Based Des Struct Mach, pp 1–37. https://doi.org/10.1080/15397734.2020.1772088

  61. Habibi M, Safarpour M, Safarpour H (2020) Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1779086

    Article  Google Scholar 

  62. Al-Furjan M, Safarpour H, Habibi M, Safarpour M, Tounsi A (2020) A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Eng Comput. https://doi.org/10.1007/s00366-020-01088-7

    Article  Google Scholar 

  63. Zhang X, Shamsodin M, Wang H, NoormohammadiArani O, khan AM, Habibi M, Al-Furjan M (2020) Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory. J Biomol Struct Dyn (just-accepted), pp 1–26. https://doi.org/10.1080/07391102.2020.1760939

  64. Habibi M, Taghdir A, Safarpour H (2019) Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets. Compos B Eng 175:107125

    Google Scholar 

  65. Pourjabari A, Hajilak ZE, Mohammadi A, Habibi M, Safarpour H (2019) Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures. Comput Math Appl 77(10):2608–2626

    MathSciNet  MATH  Google Scholar 

  66. Cheshmeh E, Karbon M, Eyvazian A, Jung D, Tran T, Habibi M, Safarpour M (2020) Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher-order shear deformation theory. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1744005

  67. Najaafi N, Jamali M, Habibi M, Sadeghi S, Dw J, Nabipour N (2020) Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1751297

    Article  Google Scholar 

  68. Shariati A, Mohammad-Sedighi H, Żur KK, Habibi M, Safa M (2020a) Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters. Symmetry 12(4):586

    Google Scholar 

  69. Oyarhossein MA, Aa A, Habibi M, Makkiabadi M, Daman M, Safarpour H, Jung DW (2020) Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes. Sci Rep 10(1):5616. https://doi.org/10.1038/s41598-020-61855-w

    Article  Google Scholar 

  70. Shamsaddini Lori E, Ebrahimi F, Elianddy Bin Supeni E, Habibi M, Safarpour H (2020) The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Eng Comput. https://doi.org/10.1007/s00366-020-01004-z

    Article  Google Scholar 

  71. Moayedi H, Ebrahimi F, Habibi M, Safarpour H, Foong LK (2020) Application of nonlocal strain–stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell. Eng Comput. https://doi.org/10.1007/s00366-020-01002-1

    Article  Google Scholar 

  72. Safarpour M, Ebrahimi F, Habibi M, Safarpour H (2020) On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk. Eng Comput. https://doi.org/10.1007/s00366-020-00949-5

    Article  Google Scholar 

  73. Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer. Eur Phys J Plus 135(2):144. https://doi.org/10.1140/epjp/s13360-020-00217-x

    Article  Google Scholar 

  74. Ebrahimi F, Hashemabadi D, Habibi M, Safarpour H (2019) Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsyst Technol, pp 1–13

  75. Adamian A, Safari KH, Sheikholeslami M, Habibi M, Al-Furjan M, Chen G (2020) Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel. Appl Sci 10(9):3251

    Google Scholar 

  76. Shariati A, Habibi M, Tounsi A, Safarpour H, Safa M (2020) Application of exact continuum size‑dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. Eng Comput. https://doi.org/10.1007/s00366-020-01024-9

  77. Al-Furjan M, Mohammadgholiha M, Alarifi IM, Habibi M, Safarpour H (2020) On the phase velocity simulation of the multi curved viscoelastic system via an exact solution framework. Eng Comput. https://doi.org/10.1007/s00366-020-01152-2

    Article  Google Scholar 

  78. Al-Furjan M, Habibi M, Chen G, Safarpour H, Safarpour M, Tounsi A (2020b) Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM. Eng Comput. https://doi.org/10.1007/s00366-020-01144-2

    Article  Google Scholar 

  79. Al-Furjan M, Habibi M, won Jung D, Chen G, Safarpour M, Safarpour H, (2020) Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doubly-curved panel. Eur J Mech A/Solids: https://doi.org/10.1016/j.euromechsol.2020.104091

    Article  MATH  Google Scholar 

  80. Al-Furjan M, Habibi M, Won Jung D, Sadeghi S, Safarpour H, Tounsi A, Chen G (2020) A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel. Eng Comput, https://doi.org/10.1007/s00366-020-01130-8

    Article  Google Scholar 

  81. Al-Furjan M, Oyarhossein MA, Habibi M, Safarpour H, Jung DW (2020) Wave propagation simulation in an electrically open shell reinforced with multi-phase nanocomposites. Eng Comput, pp 1–17. https://doi.org/10.1007/s00366-020-01167-9

  82. Al-Furjan M, Oyarhossein MA, Habibi M, Safarpour H, Jung DW, Tounsi A (2020) On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel. Compos Struct 255:112947. https://doi.org/10.1016/j.compstruct.2020.112947

  83. Al-Furjan M, Fereidouni M, Habibi M, Abd Ali R, Ni J, Safarpour M (2020) Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework. Eng Comput, pp 1–23. https://doi.org/10.1007/s00366-020-01177-7

  84. Li Y, Li S, Guo K, Fang X, Habibi M (2020) On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach. Eng Comput, pp 1–22. https://doi.org/10.1007/s00366-020-01166-w

  85. Shariati A, Mohammad-Sedighi H, Żur KK, Habibi M, Safa M (2020b) On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams. Materials 13(7):1707

    Google Scholar 

  86. Moayedi H, Habibi M, Safarpour H, Safarpour M, Foong L (2019) Buckling and frequency responses of a graphen nanoplatelet reinforced composite microdisk. Int J Appl Mecha. https://doi.org/10.1142/S1758825119501023

  87. Moayedi H, Aliakbarlou H, Jebeli M, Noormohammadiarani O, Habibi M, Safarpour H, Foong L (2020) Thermal buckling responses of a graphene reinforced composite micropanel structure. Int J Appl Mech 12(01):2050010. https://doi.org/10.1142/S1758825120500106

    Article  Google Scholar 

  88. Shokrgozar A, Safarpour H, Habibi M (2020) Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator. Proc Inst Mech Eng Part C: J Mech Eng Sci 234(2):512–529

    Google Scholar 

  89. Habibi M, Mohammadi A, Safarpour H, Ghadiri M (2019) Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell. Mech Based Des Struct Mach, pp 1–30. https://doi.org/10.1080/15397734.2019.1701490

  90. Habibi M, Mohammadi A, Safarpour H, Shavalipour A, Ghadiri M (2019) Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1697932

    Article  Google Scholar 

  91. Vinyas M, Harursampath D, Kattimani S (2020) On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electro-magnetic conditions using higher order finite element methods. Defence Technol https://doi.org/10.1016/j.dt.2020.03.012

  92. Vinyas M, Harursampath D, Kattimani S (2020) Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory. Struct Eng Mech 73(6):667–684

    Google Scholar 

  93. Vinyas M, Sandeep A, Nguyen-Thoi T, Ebrahimi F, Duc D (2019) A finite element–based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory. J Intell Mater Syst Struct 30(16):2478–2501

    Google Scholar 

  94. Qaderi S, Ebrahimi F, Vinyas M (2019) Dynamic analysis of multi-layered composite beams reinforced with graphene platelets resting on two-parameter viscoelastic foundation. Eur Phys J Plus 134(7):339

    Google Scholar 

  95. Vinyas M, Harursampath D (2020) Computational evaluation of electro-magnetic circuits’ effect on the coupled response of multifunctional magneto-electro-elastic composites plates exposed to hygrothermal fields. Proc Inst Mech Eng Part C J Mech Eng Sci. https://doi.org/10.1177/0954406220954485

  96. Vinyas M (2020b) Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study. Mater Res Express 6(12):125707

    Google Scholar 

  97. Vinyas M (2019) Vibration control of skew magneto-electro-elastic plates using active constrained layer damping. Compos Struct 208:600–617

    Google Scholar 

  98. Tornabene F, Fantuzzi N, Ubertini F, Viola E (2015) Strong formulation finite element method based on differential quadrature: a survey. Appl Mech Rev 10(1115/1):4028859

    Google Scholar 

  99. Karimiasl M, Ebrahimi F, Akgöz B (2019) Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading. Compos Struct 223:110988

    Google Scholar 

Download references

Funding

National Natural Science Foundation of China (51675148). The Outstanding Young Teachers Fund of Hangzhou Dianzi University (GK160203201002/003). National Natural Science Foundation of China (51805475). This research was supported by the 2020 scientific promotion funded by Jeju National University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mostafa Habibi, Dong won Jung or Abdelouahed Tounsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Furjan, M.S.H., Habibi, M., Ni, J. et al. Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems. Engineering with Computers 38 (Suppl 5), 3725–3741 (2022). https://doi.org/10.1007/s00366-020-01200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01200-x

Keywords

Navigation