Skip to main content
Log in

Large-Dimensional Organic Semiconductor Crystals with Poly(butyl acrylate) Polymer for Solution-Processed Organic Thin Film Transistors

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

This article has been updated

Abstract

Despite solution processed organic semiconductors have attracted much research attention, the randomized crystallization and large prevalence of grain boundary remain as a challenge to realize high performance organic electronic applications. In this work, we report the incorporation of poly(butyl acrylate) polymer additive with organic semiconductors with the mediation of a solvent vapor annealing method in order to modify the nucleation and crystal growth process. As 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) was experimented as a benchmark semiconductor, we demonstrated that the TIPS pentacene/poly(butyl acrylate) mixture exhibits rigidly aligned crystals, large grain width and improved areal coverage. In particular, thin film morphological characterization indicated a substantial reduction in misorientation angle by approximately two orders of magnitude as well as a 5-fold enlargement of grain width. A grain boundary model is proposed as a theoretic basis to understand the connection between grain width and hole mobility. Bottom-gate, top-contact thin film transistors based on TIPS pentacene/poly(butyl acrylate) blends demonstrated enhanced hole mobility of up to 0.11 cm2/Vs.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 25 November 2020

    The size of the Graphical Abstract is reduced

References

  1. Choi, K.N., Kim, K.S., Chung, K.S., Lee, H.: Solvent effect on the electrical properties of triisopropylsilylethynyl (TIPS) pentacene organic thin-film transistors. IEEE Trans. Device Mater. Reliab. 9, 489–493 (2009)

    CAS  Google Scholar 

  2. Li, X.R., Kjellander, B.K.C., Anthony, J.E., Bastiaansen, C.W.M., Broer, D.J., Gelinck, G.H.: Azeotropic binary solvent mixtures for preparation of organic single crystals. Adv. Funct. Mater. 19, 3610–3617 (2009)

    CAS  Google Scholar 

  3. He, Z., Zhang, Z., Bi, S., Chen, J., Li, D.: Conjugated polymer controlled morphology and charge transport of small-molecule organic semiconductors. Sci. Rep. 10, 4344 (2020)

    Google Scholar 

  4. Chai, Z., Abbasi, S.A., Busnaina, A.A.: Solution-processed organic field-effect transistors using directed assembled carbon nanotubes and 2,7-dioctyl 1 benzothieno 3,2-b 1 benzothiophene (C8-BTBT). Nanotechnology 30, 485203 (2019)

    CAS  Google Scholar 

  5. Janneck, R., Nowack, T.S., De Roose, F., Ali, H., Dehaene, W., Heremans, P., Genoe, J., Rolin, C.: Integration of highly crystalline C8-BTBT thin-films into simple logic gates and circuits. Org. Electron. 67, 64–71 (2019)

    CAS  Google Scholar 

  6. Onojima, N., Akiyama, N., Mori, Y., Sugai, T., Obata, S.: Small molecule/polymer blends prepared by environmentally-friendly process for mechanically-stable flexible organic field-effect transistors. Org. Electron. 78, 105597 (2020)

    CAS  Google Scholar 

  7. He, Z., Shaik, S., Bi, S., Chen, J., Li, D.: Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology. Appl. Phys. Lett. 106, 183301 (2015)

    Google Scholar 

  8. Kim, C.-H.: Improved device ideality in aged organic transistors. Electron. Mater. Lett. 15, 166–170 (2019)

    CAS  Google Scholar 

  9. He, Z., Zhang, Z., Bi, S., Asare-Yeboah, K., Chen, J., Li, D.: A facile and novel route to improve TIPS pentacene based organic thin film transistor performance with elastomer. Synth. Met. 262, 116337 (2020)

    CAS  Google Scholar 

  10. Seo, H.J., Gil, Y.E., Hwang, K.-H., Ananth, A., Boo, J.-H.: Synthesis and characterization of plasma-polymer gate dielectric films for graphene field effect transistor devices. Electron. Mater. Lett. 15, 396–401 (2019)

    CAS  Google Scholar 

  11. He, Z., Zhang, Z., Bi, S.: Long-range crystal alignment with polymer additive for organic thin film transistors. J. Polym. Res. 26, 173 (2019)

    Google Scholar 

  12. Sharma, A., Chourasia, N.K., Acharya, V., Pal, N., Biring, S., Liu, S.-W., Pal, B.N.: Ultra-low voltage metal oxide thin film transistor by low-temperature annealed solution processed LiAlO2 gate dielectric. Electron. Mater. Lett. 16, 22–34 (2020)

    CAS  Google Scholar 

  13. Asare-Yeboah, K., Li, Q., Jiang, C., He, Z., Bi, S., Liu, Y., Liu, C.: High performance and efficiency resonant photo-effect-transistor by near-field nano-strip-controlled organic light emitting diode gate. J. Phys. Chem. Lett. 11, 6526–6534 (2020)

    CAS  Google Scholar 

  14. Tong, G., Jiang, M., Son, D.-Y., Qiu, L., Liu, Z., Ono, L.K., Qi, Y.: Inverse growth of large grain size and stable inorganic perovskite micro-nanowire photodetectors. ACS Appl. Mater. Interfaces (2020)

  15. Hamid, T., Yambem, S.D., Pandey, A.K.: Photodetection efficiency enhancement of IR sensitive organic photodetectors via triplet energy transfer. Synth. Met. 256, 116117 (2019)

    CAS  Google Scholar 

  16. Chen, R., Liu, C., Asare-Yeboah, K., Zhang, Z., He, Z., Liu, Y.: Wavelength modulation of ZnO nanowire based organic light-emitting diodes with ultraviolet electroluminescence. RSC Adv. 10, 3775–23781 (2020)

    Google Scholar 

  17. Bi, S., Li, Q., He, Z., Guo, Q., Asare-Yeboah, K., Liu, Y., Jiang, C.: Highly enhanced performance of integrated piezo photo-transistor with dual inverted OLED gate and nanowire array channel. Nano Energy 66, 104101 (2019)

    CAS  Google Scholar 

  18. Amer, K., Elshaer, A.M., Anas, M., Ebrahim, S.: Fabrication, characterization, and electrical measurements of gas ammonia sensor based on organic field effect transistor. J. Mater. Sci. Mater. Electron. 30, 391–400 (2019)

    CAS  Google Scholar 

  19. Fan, H.D., Han, S.J., Song, Z.H., Yu, J.S., Katz, H.E.: Organic field-effect transistor gas sensor based on GO/PMMA hybrid dielectric for the enhancement of sensitivity and selectivity to ammonia. Org. Electron. 67, 247–252 (2019)

    CAS  Google Scholar 

  20. Chen, R., Liu, C., Asare-Yeboah, K., Zhang, Z., He, Z., Liu, Y.: Ultra-high resolution position sensors with self-assembled zinc oxide nanowire arrays. J. Mater. Chem. C 8, 9954–9959 (2020)

    CAS  Google Scholar 

  21. Lee, J.H., Seo, Y., Park, Y.D., Anthony, J.E., Kwak, D.H., Lim, J.A., Ko, S., Jang, H.W., Cho, K., Lee, W.H.: Effect of crystallization modes in TIPS-pentacene/insulating polymer blends on the gas sensing properties of organic field-effect transistors. Sci. Rep. 9, 21 (2019)

    Google Scholar 

  22. He, Z., Asare-Yeboah, K., Zhang, Z., Bi, S.: Self-assembly crystal microribbons with nucleation additive for high-performance organic thin film transistors. Jpn. J. Appl. Phys. 58, 061009 (2019)

    CAS  Google Scholar 

  23. Barra, M., Viggiano, D., Ambrosino, P., Bloisi, F., Di Girolamo, F.V., Soldovieri, M.V., Taglialatela, M., Cassinese, A.: Addressing the use of PDIF-CN2 molecules in the development of n-type organic field-effect transistors for biosensing applications. Biochim Biophys Acta Gen Subj 1830, 4365–4373 (2013)

    CAS  Google Scholar 

  24. Willa, K., Hausermann, R., Mathis, T., Facchetti, A., Chen, Z., Batlogg, B.: From organic single crystals to solution processed thin-films: charge transport and trapping with varying degree of order. J. Appl. Phys. 113, 133707 (2013)

    Google Scholar 

  25. Haase, K., da Rocha, C.T., Hauenstein, C., Zheng, Y.C., Hambsch, M., Mannsfeld, S.C.B.: High-mobility, solution-processed organic field-effect transistors from C8-BTBT:polystyrene blends. Adv. Electron. Mater. 4, 1800076 (2018)

    Google Scholar 

  26. Chung, H., Diao, Y.: Polymorphism as an emerging design strategy for high performance organic electronics. J. Mater. Chem. C 4, 3915–3933 (2016)

    CAS  Google Scholar 

  27. He, Z., Chen, J., Li, D.: Crystal alignment for high performance organic electronics devices. J. Vac. Sci. Technol. A 37, 040801 (2019)

    Google Scholar 

  28. Leonardi, F., Zhang, Q., Kim, Y.-H., Mas-Torrent, M.: Solution-sheared thin films of a donor-acceptor random copolymerpolystyrene blend as active material in field-effect transistors. Mater. Sci. Semicond. Process. 93, 105–110 (2019)

    CAS  Google Scholar 

  29. Asare-Yeboah, K., Bi, S., He, Z., Li, D.: Temperature gradient controlled crystal growth from TIPS pentacene-poly(alpha-methyl styrene) blends for improving performance of organic thin film transistors. Org. Electron. 32, 195–199 (2016)

    CAS  Google Scholar 

  30. Bi, S., Li, Y., He, Z., Ouyang, Z., Guo, Q., Jiang, C.: Self-assembly diketopyrrolopyrrole-based materials and polymer blend with enhanced crystal alignment and property for organic field-effect transistors. Org. Electron. 65, 96–99 (2019)

    CAS  Google Scholar 

  31. He, Z., Chen, J., Li, D.: Polymer additive controlled morphology for high performance organic thin film transistors. Soft Matter 15, 5790–5803 (2019)

    CAS  Google Scholar 

  32. Kim, M.-W., Kwon, S., Kim, J., Lee, C., Park, I., Shim, J.H., Jeong, I.-S., Jo, Y.-R., Park, B., Lee, J.-H., Lee, K., Kim, B.-J.: Reversible polymorphic transition and hysteresis-driven phase selectivity in single‐crystalline C8‐BTBT rods. Small 16, 1906109 (2020)

    CAS  Google Scholar 

  33. Sim, K., Palai, A.K., Tarsoly, G., Na, H., Pyo, S.: Polymer binder assisted, solution processed cyanophenyl functionalized diketopyrrolopyrrole microwire for n-channel field-effect transistors. Synth. Met. 250, 152–160 (2019)

    CAS  Google Scholar 

  34. Chen, J., Shao, M., Xiao, K., He, Z., Li, D., Lokitz, B.S., Hensley, D.K., Kilbey, S.M., Anthony, I.I., Keum, J.E., Rondinone, J.K., Lee, A.J., Hong, W.-Y., Bao, S.Z.: Conjugated polymer-mediated polymorphism of a high performance, small-molecule organic semiconductor with tuned intermolecular interactions, enhanced long-range order, and charge transport. Chem. Mater. 25, 4378–4386 (2013)

    CAS  Google Scholar 

  35. Yoo, H., Choi, H.H., Shin, T.J., Rim, T., Cho, K., Jung, S., Kim, J.-J.: Self-assembled, millimeter-sized tips-pentacene spherulites grown on partially crosslinked polymer gate dielectric. Adv. Funct. Mater. 25, 3658–3665 (2015)

    CAS  Google Scholar 

  36. Chen, J.H., Tee, C.K., Shtein, M., Martin, D.C., Anthony, J.: Controlled solution deposition and systematic study of charge-transport anisotropy in single crystal and single-crystal textured TIPS pentacene thin films. Org. Electron. 10, 696–703 (2009)

    CAS  Google Scholar 

  37. He, Z., Bi, S., Asare-Yeboah, K., Zhang, Z.: Phase segregation effect on TIPS pentacene crystallization and morphology for organic thin film transistors. J. Mater. Sci. Mater. Electron. 31, 4503–4510 (2020)

    CAS  Google Scholar 

  38. He, Z., Zhang, Z., Bi, S.: Nanoparticles for organic electronics applications. Mater. Res. Express 7, 012004 (2020)

    CAS  Google Scholar 

  39. He, Z., Xiao, K., Durant, W., Hensley, D.K., Anthony, J.E., Hong, K., Kilbey, S.M., Chen, I.I., Li, J.: D., Enhanced performance consistency in nanoparticle/TIPS pentacene-based organic thin film transistors. Adv. Funct. Mater. 21, 3617–3623 (2011)

    CAS  Google Scholar 

  40. Zhang, Z., He, Z., Bi, S., Asare-Yeboah, K.: Phase segregation controlled semiconductor crystallization for organic thin film transistors. J. Sci. Adv. Mater. Devices (2020)

  41. He, Z., Zhang, Z., Bi, S.: Polyacrylate polymer assisted crystallization: improved charge transport and performance consistency for solution-processable small-molecule semiconductor based organic thin film transistors. J. Sci. Adv. Mater. Devices 4, 467–472 (2019)

    Google Scholar 

  42. He, Z., Zhang, Z., Bi, S., Chen, J.: Effect of polymer molecular weight on morphology and charge transport of small-molecular organic semiconductors. Electron. Mater. Lett. 16(5), 441–450 (2020)

    CAS  Google Scholar 

  43. Chen, J.H., Subramanian, S., Parkin, S.R., Siegler, M., Gallup, K., Haughn, C., Martin, D.C., Anthony, J.E.: The influence of side chains on the structures and properties of functionalized pentacenes. J. Mater. Chem. 18, 1961–1969 (2008)

    CAS  Google Scholar 

  44. Chen, J.H., Martin, D.C., Anthony, J.E.: Morphology and molecular orientation of thin-film bis(triisopropylsilylethynyl) pentacene. J. Mater. Res. 22, 1701–1709 (2007)

    CAS  Google Scholar 

  45. He, Z., Zhang, Z., Bi, S., Asare-Yeboah, K., Chen, J.: Ultra-low misorientation angle in small-molecule semiconductor/polyethylene oxide blends for organic thin film transistors. J. Polym. Res. 27, 75 (2020)

    CAS  Google Scholar 

  46. He, Z., Li, D., Hensley, D.K., Rondinone, A.J., Chen, J.: Switching phase separation mode by varying the hydrophobicity of polymer additives in solution-processed semiconducting small-molecule/polymer blends. Appl. Phys. Lett. 103, 113301 (2013)

    Google Scholar 

  47. Neo, W.T., Ye, Q., Shi, Z., Chua, S.-J., Xu, J.: Control of morphology and performance of diketopyrrolopyrrole-based electrochromic polymers using solvent vapor annealing. J. Polym. Res. 25, 68 (2018)

    Google Scholar 

  48. Zhu, X., Wang, Q., Tian, X., Zhang, X., Feng, Y., Feng, W., Li, R., Hu, W.: Unidirectional and crystalline organic semiconductor microwire arrays by solvent vapor annealing with PMMA as the assisting layer. J. Mater. Chem. C 6, 12479–12483 (2018)

    CAS  Google Scholar 

  49. Khan, H.U., Li, R.P., Ren, Y., Chen, L., Payne, M.M., Bhansali, U.S., Smilgies, D.M., Anthony, J.E., Amassian, A.: Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors. ACS Appl. Mater. Interfaces 5, 2325–2330 (2013)

    Google Scholar 

  50. Liu, C.A., Minari, T., Lu, X.B., Kumatani, A., Takimiya, K., Tsukagoshi, K.: Solution-processable organic single crystals with bandlike transport in field-effect transistors. Adv. Mater. 23, 523–526 (2011)

    CAS  Google Scholar 

  51. Chen, J.H., Tee, C.K., Shtein, M., Anthony, J., Martin, D.C.: Grain-boundary-limited charge transport in solution-processed 6,13 bis(tri-isopropylsilylethynyl) pentacene thin film transistors. J. Appl. Phys. 103, 114513 (2008)

    Google Scholar 

  52. Di Carlo, A., Piacenza, F., Bolognesi, A., Stadlober, B., Maresch, H.: Influence of grain sizes on the mobility of organic thin-film transistors. Appl. Phys. Lett. 86, 263501 (2005)

    Google Scholar 

  53. Levinson, J., Shepherd, F.R., Scanlon, P.J., Westwood, W.D., Este, G., Rider, M.: Conductivity behavior in polycrystalline semiconductor thin film transistors. J. Appl. Phys. 53, 1193–1202 (1982)

    CAS  Google Scholar 

  54. Farmakis, F.V., Brini, J., Kamarinos, G., Angelis, C.T., Dimitriadis, C.A., Miyasaka, M.: On-current modeling of large-grain polycrystalline silicon thin-film transistors. IEEE Trans. Electron Devices 48, 701–706 (2001)

    CAS  Google Scholar 

  55. He, Z., Chen, J., Sun, Z., Szulczewski, G., Li, D.: Air-flow navigated crystal growth for TIPS pentacene-based organic thin-film transistors. Org. Electron. 13, 1819–1826 (2012)

    CAS  Google Scholar 

  56. Takumi, Y., Hiroki, F., Yoshinari, K., Yoshiaki, H., Masatoshi, K.: Wide-range work function tuning in gold surfaces modified with fluorobenzenethiols toward application to organic thin-film transistors. Flex. Print. Electron. 5, 014011 (2020)

    Google Scholar 

  57. Borchert, J.W., Peng, B.Y., Letzkus, F., Burghartz, J.N., Chan, P.K., Zojer, L., Ludwigs, K., Klauk, S.: H., Small contact resistance and high-frequency operation of flexible low-voltage inverted coplanar organic transistors. Nat. Commun. 10 (2019)

  58. Kim, Y.H., Yoo, B., Anthony, J.E., Park, S.K.: Controlled deposition of a high-performance small-molecule organic single-crystal transistor array by direct ink-jet printing. Adv. Mater. 24, 497–502 (2012)

    CAS  Google Scholar 

  59. Kim, D.H., Lee, D.Y., Lee, S.G., Cho, K.: High-mobility organic single-crystal microtubes of soluble pentacene semiconductors with hollow tetragonal structures. Chem. Mater. 24, 2752–2756 (2012)

    CAS  Google Scholar 

  60. He, Z., Zhang, Z., Bi, S.: Nanoscale alignment of semiconductor crystals for high-fidelity organic electronics applications. Appl. Nanosci. (2019). https://doi.org/10.1007/s13204-019-01068-4

    Article  Google Scholar 

  61. Abdullah, I., Lan, H., Morrison, J., Alharbi, A., Macdonald, J.E., Yeates, S.G.: The synergistic role of azeotropic solvent mixtures and atactic polystyrene on the morphology, crystallization and field effect mobility of thin film 6,13-bis(triisopropylsilylethynyl)-pentacene based semiconductors. J. Mater. Sci. Mater. Electron. 29, 9804–9813 (2018)

    CAS  Google Scholar 

  62. He, Z., Zhang, Z., Asare-Yeboah, K., Bi, S.: Poly(α-methylstyrene) polymer and small-molecule semiconductor blend with reduced crystal misorientation for organic thin film transistors. J. Mater. Sci. Mater. Electron. 30, 14335–14343 (2019)

    CAS  Google Scholar 

  63. Asare-Yeboah, K., Frazier, R.M., Szulczewski, G., Li, D.: Temperature gradient approach to grow large, preferentially oriented 6,13-bis(triisopropylsilylethynyl) pentacene crystals for organic thin film transistors. J. Vac. Sci. Technol. B 32, 052401 (2014)

    Google Scholar 

  64. Lim, J.A., Lee, W.H., Lee, H.S., Lee, J.H., Park, Y.D., Cho, K.: Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 18, 229–234 (2008)

    CAS  Google Scholar 

  65. He, Z., Zhang, Z., Bi, S.: Small-molecule additives for organic thin film transistors. J. Mater. Sci. Mater. Electron. 30, 20899–20913 (2019)

    CAS  Google Scholar 

  66. He, Z., Chen, J., Keum, J.K., Szulczewski, G., Li, D.: Improving performance of TIPS pentacene-based organic thin film transistors with small-molecule additives. Org. Electron. 15, 150–155 (2014)

    CAS  Google Scholar 

  67. Hwang, D.K., Fuentes-Hernandez, C., Berrigan, J.D., Fang, Y.N., Kim, J., Potscavage, W.J., Cheun, H., Sandhage, K.H., Kippelen, B.: Solvent and polymer matrix effects on TIPS-pentacene/polymer blend organic field-effect transistors. J. Mater. Chem. 22, 5531–5537 (2012)

    CAS  Google Scholar 

  68. He, Z., Lopez, N., Chi, X., Li, D.: Solution-based 5,6,11,12-tetrachlorotetracene crystal growth for high-performance organic thin film transistors. Org. Electron. 22, 191–196 (2015)

    CAS  Google Scholar 

  69. Bi, S., He, Z., Chen, J., Li, D.: Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors. AIP Adv. 5, 077170 (2015)

    Google Scholar 

Download references

Acknowledgements

Q. Li and S. Bi would like to thank Science and Technology Project of Liaoning Province (20180540006). Z. He would like to acknowledge support provided from the University of Alabama.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Bi or Zhengran He.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhang, Z., Asare-Yeboah, K. et al. Large-Dimensional Organic Semiconductor Crystals with Poly(butyl acrylate) Polymer for Solution-Processed Organic Thin Film Transistors. Electron. Mater. Lett. 17, 33–42 (2021). https://doi.org/10.1007/s13391-020-00253-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00253-w

Keywords

Navigation