Skip to main content

Advertisement

Log in

Integration of adaptive neural fuzzy inference system and fuzzy rough set theory with support vector regression to urban growth modelling

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Land change models are amongst the most widely developed tools for spatial decision support. Despite this progress, only a few models have been created thus far that simulate urban growth that incorporate two important aspects of uncertainty inherent to land use dynamics: fuzziness and roughness. Combining fuzziness and roughness into models will enhance the use of these tools for decision support. This study applied and evaluated a fuzzy-based approach to the feature selection effects on the accuracy of a land change model. Fuzzy rough set theory (FRST) was employed here as feature selection method and was integrated with a support vector regression (SVR) algorithm to simulate urban growth of Tabriz mega city in northwest Iran. In order to apply feature selection to a FRST algorithm, incoming data has been first fuzzified by an adaptive neural fuzzy inference system (ANFIS). To evaluate the application of FRST, SVR was used with and without FRST (SVR and SVR-FRST), while for performance evaluation logistic regression (LR) and kernelled LR (KLR) models were integrated with and without FRST (LR, LR-FRST, KLR, and KLR-FRST). The accuracy of the simulated maps of all models were evaluated by calculating the overall accuracy (OA), true positive rate (TPR), true negative rate (TNR), total operating characteristic (TOC) and their area under curve (AUC). The results showed that integrating FRST with the above-mentioned models enhanced the overall performances based on the above criteria. Among the above mentioned models, SVM-FRST and KLR-FRST yielded the best goodness of fit measures. Moreover, SVM-FRST with 83.6% OA, 41.6% TPR, and 90.4% TNR performs better than KLR-FRST with 82.4% OA, 37.4% TPR, and 89.8% TNR. However, KLR-FRST has more AUC, less green area destruction, more barren to urban areas conversion, and fast tuning process related to SVR-FRST. Finally, we suggest that KLR-FRST and SVR-FRST are, among those evaluated, the most appropriate models for urban growth modelling of the Tabriz mega city of Iran when considering uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aburas MM, Ho YM, Ramli MF, Ash’aari ZH (2016) The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review. Int J Appl Earth Obs Geoinf 52:380–389

    Article  Google Scholar 

  • Ali OAM, Ali AY, Sumait BS (2015) Comparison between the effects of different types of membership functions on fuzzy logic controller performance. Int J Emerg Eng Res Technol 3:76–83

    Google Scholar 

  • Arsanjani JJ, Helbich M, Kainz W, Boloorani AD (2013) Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int J Appl Earth Obs Geoinf 21:265–275

    Article  Google Scholar 

  • Azari M, Tayyebi A, Helbich M, Reveshty MA (2016) Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: application to Maragheh, Iran. GISci Remote Sens 53(2):183–205

    Article  Google Scholar 

  • Behr M, Noseworthy M, Kumbhare D (2019) Feasibility of a support vector machine classifier for Myofascial pain syndrome: diagnostic case-control study. J Ultrasound Med 38:2119–2132

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Dai J, Xu Q (2013) Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification. Appl Soft Comput 13(1):211–221

    Article  Google Scholar 

  • Deng Y, Srinivasan S (2016) Urban land use change and regional access: a case study in Beijing, China. Habitat Int 51:103–113

    Article  Google Scholar 

  • Dubois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17(2–3):191–209

    Article  Google Scholar 

  • Elbashir MK, Wang J (2015) Kernel logistic regression algorithm for large-scale data classification. Int Arab J Information Technol 12(5):465–472

    Google Scholar 

  • Feng Y, Liu Y, Tong X, Liu M, Deng S (2011) Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landsc Urban Plan 102(3):188–196

    Article  Google Scholar 

  • Fernández-Delgado M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to solve real world classification problems? J Machine Learn Res 15(1):3133–3181

    Google Scholar 

  • Hsu C-W, Chang C-C, Lin C-J (2003) A Practical Guide to Support Vector Classification. http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf

  • Huang CL, Wang CJ (2006) A GA-based FS and parameters optimization for support vector machines. Expert Syst Appl 31(2):231–240

    Article  Google Scholar 

  • Huang B, Zhang L, Wu B (2009) Spatiotemporal analysis of rural–urban land conversion. Int J Geogr Inf Sci 23(3):379–398

    Article  Google Scholar 

  • Iran Census Information (2016) The statistical Center of Iran. Available online: http://www.amar.org.ir (accessed on 20 April 2017)

  • Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybernetics 23(3):665–685

    Article  Google Scholar 

  • Jedwab R, Christiaensen L, Gindelsky M (2015) Demography, urbanization and development: rural push, urban pull and urban push? J Urban Econ 98:6–16

    Article  Google Scholar 

  • Jensen R (2005). Combining Roughs and Fuzzy Sets for FS. PhD Thesis, University of Edinburgh. http://users.aber.ac.uk/rkj/PhDthesis.pdf

  • Jensen R, Tuson A, Shen Q (2014) Finding rough and fuzzy-rough set reducts with SAT. Inf Sci 255:100–120

    Article  Google Scholar 

  • Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philosophical Trans Royal Soc A: Mathematical Phys Eng Sci 374(2065)

  • Kaloustian N, Diab Y (2015) Effects of urbanization on the urban heat island in Beirut. Urban Clim 14:154–165

    Article  Google Scholar 

  • Kazak JK (2018) The use of a decision support system for sustainable urbanization and thermal comfort in adaptation to climate change actions—the case of the Wroclaw larger urban zone (Poland). Sustainability 10(4):1083

    Article  Google Scholar 

  • Kreinovich V, Quintana C, Reznik L (1992) Gaussian membership functions are most adequate in representing uncertainty in measurements. NAFIPS, Puerto Vallarta

    Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang 11(4):261–269

    Article  Google Scholar 

  • Langhammer J, Česák J (2016) Applicability of a nu-support vector regression model for the completion of missing data in hydrological time series. Water 8(12):560

    Article  Google Scholar 

  • Li X, Yeh AGO (2002) Urban simulation using principal components analysis and cellular automata for land-use planning. Photogramm Eng Remote Sens 68(4):341–352

    Google Scholar 

  • Lin SW, Lee ZJ, Chen SC, Tseng TY (2008) Parameter determination of support vector machine and FS using simulated annealing approach. Appl Soft Comput 8(4):1505–1512

    Article  Google Scholar 

  • Liu X, Ma L, Li X, Ai B, Li S, He Z (2014) Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata. Int J Geogr Inf Sci 28(1):148–163

    Article  Google Scholar 

  • Ma Y, Ding X, She Q, Luo Z, Potter T, Zhang Y (2016) Classification of motor imagery EEG signals with support vector machines and particle swarm optimization. Comput Mathematical Methods Med 2016, Article ID 4941235:1–8

    Google Scholar 

  • Naghibi F, Delavar MR, Pijanowski B (2016) Urban growth modeling using cellular automata with multi-temporal remote sensing images calibrated by the artificial bee colony optimization algorithm. Sensors 16(12):2122

    Article  Google Scholar 

  • Pawlak Z (1982) Rough sets. Int J Parallel Prog 11(5):341–356

    Google Scholar 

  • Pontius RG, Parmentier B (2014) Recommendations for using the relative operating characteristic (ROC). Landsc Ecol 29(3):367–382

    Article  Google Scholar 

  • Pontius RG, Schneider LC (2001) Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85(1):239–248

    Article  Google Scholar 

  • Pontius RG, Si K (2014) The total operating characteristic to measure diagnostic ability for multiple thresholds. Int J Geogr Inf Sci 28(3):570–583

    Article  Google Scholar 

  • Pontius RG, Boersma W, Castella JC, Clarke K, de Nijs T, Dietzel C, Duan Z, Fotsing E, Goldstein N, Kok K, Koomen E (2008) Comparing the input, output, and validation maps for several models of land change. Ann Reg Sci 42(1):11–37

    Article  Google Scholar 

  • Quah KH, Quek C (2006) FITSK: online local learning with generic fuzzy input Takagi-Sugeno-Kang fuzzy framework for nonlinear system estimation. IEEE Trans Syst Man Cybernetics Part B (Cybernetics) 36(1):166–178

    Article  Google Scholar 

  • Raschka S (2018) Model evaluation, model selection, and algorithm selection in machine learning. ArXiv 1811:12808

    Google Scholar 

  • Rienow A, Goetzke R (2015) Supporting SLEUTH–enhancing a cellular automaton with support vector machines for urban growth modeling. Comput Environ Urban Syst 49:66–81

    Article  Google Scholar 

  • Sahin MÖ, Krücker D, Melzer-Pellmann IA (2016) Performance and optimization of support vector machines in high-energy physics classification problems. Nuclear Instruments Methods Phys Res Sect A: Accelerators, Spectrometers, Detect Associat Equipment 838:137–146

    Article  Google Scholar 

  • Santé I, García AM, Miranda D, Crecente R (2010) Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc Urban Plan 96(2):108–122

    Article  Google Scholar 

  • Sartakhti JS, Ghadiri N, Afrabandpey H, Yousefnezhad N (2015) Fuzzy least squares twin support vector machines. ArXiv 1505:05451

    Google Scholar 

  • Shafizadeh-Moghadam H, Tayyebi A, Ahmadlou M, Delavar MR, Hasanlou M (2017) Integration of genetic algorithm and multiple kernel support vector regression for modeling urban growth. Comput Environ Urban Syst 65:28–40

    Article  Google Scholar 

  • Sharma M (2012) Artificial neural network fuzzy inference system (ANFIS) for brain tumor detection. Eur Sci J 13(3):329–339

    Google Scholar 

  • Smola AJ (1996) Regression estimation with support vector learning machines. Doctoral dissertation, Master’s thesis, Technische Universität München pp. 78

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE trans Syst Man Cybernetics 1:116–132

    Article  Google Scholar 

  • Tan M (2015) Urban growth and rural transition in China based on DMSP/OLS nighttime light data. Sustainability 7(7):8768–8781

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Mansor S, Ahmad N (2015) Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 125:91–101

    Article  Google Scholar 

  • Torres A, Jaeger JA, Alonso JC (2016) Multi-scale mismatches between urban sprawl and landscape fragmentation create windows of opportunity for conservation development. Landsc Ecol 31(10):2291–2305

    Article  Google Scholar 

  • United Nations (2016) The World’s Cities in 2016

  • Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  • Von Thaden JJ, Laborde J, Guevara S, Venegas-Barrera CS (2018) Forest cover change in the los Tuxtlas biosphere reserve and its future: the contribution of the 1998 protected natural area decree. Land Use Policy 72:443–450

    Article  Google Scholar 

  • Walia N, Singh H, Sharma A (2015) ANFIS: adaptive neuro-fuzzy inference system-a survey. Int J Comput Appl 123(13):32–38

    Google Scholar 

  • Wang F, Hasbani JG, Wang X, Marceau DJ (2011) Identifying dominant factors for the calibration of a land-use cellular automata model using rough set theory. Comput Environ Urban Syst 35(2):116–125

    Article  Google Scholar 

  • Wang L, Lei Y, Zeng Y, Tong L, Yan B (2013) Principal feature analysis: a multivariate FS method for fMRI data. Comput Mathematical Methods Med 645921:1–7

    Google Scholar 

  • Xie C (2006) Support vector Machines for Land use Change Modeling. UCGE Reports, Calgary

    Google Scholar 

  • Yao Y (1997) Combination of rough and fuzzy sets based on α-level sets. Rough sets and data mining. Springer, 301-321

  • Yi Y, Zhao Y, Ding G, Gao G, Shi M, Cao Y (2016) Effects of urbanization on landscape patterns in a mountainous area: a case study in the Mentougou district, Beijing, China. Sustainability 8(11):1190

    Article  Google Scholar 

  • Yuxia H, Hongtao Z (2012) Chaos optimization method of SVM parameters selection for chaotic time series forecasting. Phys Procedia 25:588–594

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

  • Zadeh LA (1975) Fuzzy logic and approximate reasoning. Synthese 30(3):407–428

    Article  Google Scholar 

  • Zeng A, Li T, Liu D, Zhang J, Chen H (2015) A fuzzy rough set approach for incremental FS on hybrid information systems. Fuzzy Sets Syst 258:39–60

    Article  Google Scholar 

  • Zhang HH, Genton M, Liu P (2004) Compactly supported radial basis function kernels. 10.1.1.421.8018

  • Zhang Q, Xie Q, Wang G (2016) A survey on rough set theory and its applications. CAAI Trans Intell Technol 1(4):323–333

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Delavar.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

An illustrative example of dependency coefficients of FRST calculations (Jensen 2005)

Suppose the following table as an example with three conditional features (a, b, and c) and a decision field (d). U is a non-empty set of finite objects (the universe) and A is a nonempty finite set of attributes (a, b, and c), with any T ⊆ A.

figure a

The conditional features is fuzzified towards two classes (P and Q) as shown in the following table

figure b

Suppose X = {0}, F = Pa and y = {1, 2, 3, 4, 5, 6}

Based on the following equation,

$$ {\mu}_{{\underset{\_}{apr}}_R(X)}{(x)}_{x\epsilon U}={\mathit{\sup}}_{F\epsilon U/T}\ \mathit{\min}\left({\mu}_{P_a}(x),{\mathit{\operatorname{inf}}}_{y\epsilon U}\ \mathit{\max}\left\{1-{\mu}_{P_a}(y),{\mu}_X(y)\right\}\right) $$

We calculate the values of the last part of the equation for y = {1, 2, 3, 4, 5, 6}:

$$ y=1\to \mathit{\max}\left\{1-{\mu}_{P_a}(1),{\mu}_X(1)\right\}=\mathit{\max}\left\{1-0.8,1\right\}=\mathit{\max}\left\{0.2,1\right\}=1 $$
$$ y=2\to \mathit{\max}\left\{1-{\mu}_{P_a}(2),{\mu}_X(2)\right\}=\mathit{\max}\left\{1-0.8,0\right\}=\mathit{\max}\left\{0.2,0\right\}=0.2 $$
$$ y=3\to \mathit{\max}\left\{1-{\mu}_{P_a}(3),{\mu}_X(3)\right\}=\mathit{\max}\left\{1-0.6,1\right\}=\mathit{\max}\left\{0.4,1\right\}=1 $$
$$ y=4\to \mathit{\max}\left\{1-{\mu}_{P_a}(4),{\mu}_X(4)\right\}=\mathit{\max}\left\{1-0,0\right\}=\mathit{\max}\left\{1,0\right\}=1 $$
$$ y=5\to \mathit{\max}\left\{1-{\mu}_{P_a}(5),{\mu}_X(5)\right\}=\mathit{\max}\left\{1-0,0\right\}=\mathit{\max}\left\{1,0\right\}=1 $$
$$ y=6\to \mathit{\max}\left\{1-{\mu}_{P_a}(6),{\mu}_X(6)\right\}=\mathit{\max}\left\{1-0,1\right\}=\mathit{\max}\left\{1,1\right\}=1 $$

(So,) \( {\mathit{\operatorname{inf}}}_{y\epsilon U}\ \mathit{\max}\left\{1-{\mu}_{P_a}(y),{\mu}_X(y)\right\}=\mathit{\operatorname{inf}}\left\{\mathrm{1,0.2,1},1,1,1\right\}=0.2 \)

x = {1, 2, 3, 4, 5, 6}:

$$ x=1\to \mathit{\min}\left({\mu}_{P_a}(1),0.2\right)=\mathit{\min}\left(0.8,0.2\right)=0.2 $$
$$ x=2\to \mathit{\min}\left({\mu}_{P_a}(2),0.2\right)=\mathit{\min}\left(0.8,0.2\right)=0.2 $$
$$ x=3\to \mathit{\min}\left({\mu}_{P_a}(3),0.2\right)=\mathit{\min}\left(0.6,0.2\right)=0.2 $$
$$ x=4\to \mathit{\min}\left({\mu}_{P_a}(4),0.2\right)=\mathit{\min}\left(0,0.2\right)=0.2 $$
$$ x=5\to \mathit{\min}\left({\mu}_{P_a}(5),0.2\right)=\mathit{\min}\left(0,0.2\right)=0.2 $$
$$ x=6\to \mathit{\min}\left({\mu}_{P_a}(6),0.2\right)=\mathit{\min}\left(0,0.2\right)=0.2 $$

Suppose X = {0}, F = Qa and y = {1, 2, 3, 4, 5, 6}

Based on the following equation,

$$ {\mu}_{{\underset{\_}{apr}}_R(X)}{(x)}_{x\epsilon U}={\mathit{\sup}}_{F\epsilon U/T}\ \mathit{\min}\left({\mu}_{Z_a}(x),{\mathit{\operatorname{inf}}}_{y\epsilon U}\ \mathit{\max}\left\{1-{\mu}_{Q_a}(y),{\mu}_X(y)\right\}\right) $$

We calculate the values of the last part of the equation for y = {1, 2, 3, 4, 5, 6}:

$$ y=1\to \mathit{\max}\left\{1-{\mu}_{Q_a}(1),{\mu}_X(1)\right\}=\mathit{\max}\left\{1-0.2,1\right\}=\mathit{\max}\left\{0.8,1\right\}=1 $$
$$ y=2\to \mathit{\max}\left\{1-{\mu}_{Q_a}(2),{\mu}_X(2)\right\}=\mathit{\max}\left\{1-0.2,0\right\}=\mathit{\max}\left\{0.8,0\right\}=0.8 $$
$$ y=3\to \mathit{\max}\left\{1-{\mu}_{Q_a}(3),{\mu}_X(3)\right\}=\mathit{\max}\left\{1-0.4,1\right\}=\mathit{\max}\left\{0.6,1\right\}=1 $$
$$ y=4\to \mathit{\max}\left\{1-{\mu}_{Q_a}(4),{\mu}_X(4)\right\}=\mathit{\max}\left\{1-0.4,0\right\}=\mathit{\max}\left\{0.6,0\right\}=0.6 $$
$$ y=5\to \mathit{\max}\left\{1-{\mu}_{Q_a}(5),{\mu}_X(5)\right\}=\mathit{\max}\left\{1-0.6,0\right\}=\mathit{\max}\left\{0.4,0\right\}=0.4 $$
$$ y=6\to \mathit{\max}\left\{1-{\mu}_{Q_a}(6),{\mu}_X(6)\right\}=\mathit{\max}\left\{1-0.6,1\right\}=\mathit{\max}\left\{0.4,1\right\}=1 $$
$$ {\mathit{\operatorname{inf}}}_{y\epsilon U}\ \mathit{\max}\left\{1-{\mu}_{Q_a}(y),{\mu}_X(y)\right\}=\mathit{\operatorname{inf}}\left\{\mathrm{1,0.8,1},\mathrm{0.6,0.4,1}\right\}=0.4 $$

x = {1, 2, 3, 4, 5, 6}:

$$ x=1\to \mathit{\min}\left({\mu}_{Q_a}(1),0.2\right)=\mathit{\min}\left(0.2,0.4\right)=0.2 $$
$$ x=2\to \mathit{\min}\left({\mu}_{Q_a}(2),0.2\right)=\mathit{\min}\left(0.2,0.4\right)=0.2 $$
$$ x=3\to \mathit{\min}\left({\mu}_{Q_a}(3),0.2\right)=\mathit{\min}\left(0.4,0.4\right)=0.4 $$
$$ x=4\to \mathit{\min}\left({\mu}_{Q_a}(4),0.2\right)=\mathit{\min}\left(0.4,0.4\right)=0.4 $$
$$ x=5\to \mathit{\min}\left({\mu}_{Q_a}(5),0.2\right)=\mathit{\min}\left(0.6,0.4\right)=0.4 $$
$$ x=6\to \mathit{\min}\left({\mu}_{Q_a}(6),0.2\right)=\mathit{\min}\left(0.6,0.4\right)=0.4 $$

Now,\( {\mu}_{{\underset{\_}{apr}}_R(X)}{(x)}_{x\epsilon U} \) can be calculated for x = {1, 2, 3, 4, 5, 6}:

$$ x=1\to {\mu}_{{\underset{\_}{apr}}_R(X)}{(1)}_{x\epsilon U}=\mathit{\sup}\left\{\mathrm{0.2,0.2}\right\}=0.2 $$
$$ x=2\to {\mu}_{{\underset{\_}{apr}}_R(X)}{(2)}_{x\epsilon U}=\mathit{\sup}\left\{\mathrm{0.2,0.2}\right\}=0.2 $$
$$ x=3\to {\mu}_{{\underset{\_}{apr}}_R(X)}{(3)}_{x\epsilon U}=\mathit{\sup}\left\{\mathrm{0.2,0.4}\right\}=0.4 $$
$$ x=4\to {\mu}_{{\underset{\_}{apr}}_R(X)}{(4)}_{x\epsilon U}=\mathit{\sup}\left\{\mathrm{0.2,0.4}\right\}=0.4 $$
$$ x=5\to {\mu}_{{\underset{\_}{apr}}_R(X)}{(5)}_{x\epsilon U}=\mathit{\sup}\left\{\mathrm{0.2,0.4}\right\}=0.4 $$
$$ x=6\to {\mu}_{{\underset{\_}{apr}}_R(X)}{(6)}_{x\epsilon U}=\mathit{\sup}\left\{\mathrm{0.2,0.4}\right\}=0.4 $$

Same as above calculations, \( {\mu}_{{\underset{\_}{apr}}_R(X)}{(x)}_{x\epsilon U} \) can be calculated for X = {1}:

$$ {\mu}_{{\underset{\_}{apr}}_R(X)}{(1)}_{x\epsilon U}=0.2 $$
$$ {\mu}_{{\underset{\_}{apr}}_R(X)}{(2)}_{x\epsilon U}=0.2 $$
$$ {\mu}_{{\underset{\_}{apr}}_R(X)}{(3)}_{x\epsilon U}=0.4 $$
$$ {\mu}_{{\underset{\_}{apr}}_R(X)}{(4)}_{x\epsilon U}=0.4 $$
$$ {\mu}_{{\underset{\_}{apr}}_R(X)}{(5)}_{x\epsilon U}=0.4 $$
$$ {\mu}_{{\underset{\_}{apr}}_R(X)}{(6)}_{x\epsilon U}=0.4 $$

Then, \( {\mu}_{POS_a}(x)=\mathit{\sup}{\mu}_{{\underset{\_}{apr}}_R(X)} \) for feature ‘a’ can be calculated:

$$ {\mu}_{POS_a}(1)=\mathit{\sup}{\mu}_{{\underset{\_}{apr}}_R(X)}(1)=\mathit{\sup}\left\{\mathrm{0.2,0.2}\right\}=0.2 $$
$$ {\mu}_{POS_a}(2)=\mathit{\sup}{\mu}_{{\underset{\_}{apr}}_R(X)}(2)=\mathit{\sup}\left\{\mathrm{0.2,0.2}\right\}=0.2 $$
$$ {\mu}_{POS_a}(3)=\mathit{\sup}{\mu}_{{\underset{\_}{apr}}_R(X)}(3)=\mathit{\sup}\left\{\mathrm{0.4,0.4}\right\}=0.4 $$
$$ {\mu}_{POS_a}(4)=\mathit{\sup}{\mu}_{{\underset{\_}{apr}}_R(X)}(4)=\mathit{\sup}\left\{\mathrm{0.4,0.4}\right\}=0.4 $$
$$ {\mu}_{POS_a}(5)=\mathit{\sup}{\mu}_{{\underset{\_}{apr}}_R(X)}(5)=\mathit{\sup}\left\{\mathrm{0.4,0.4}\right\}=0.4 $$
$$ {\mu}_{POS_a}(6)=\mathit{\sup}{\mu}_{{\underset{\_}{apr}}_R(X)}(6)=\mathit{\sup}\left\{\mathrm{0.4,0.4}\right\}=0.4 $$

So, the dependency coefficient of feature ‘a’ is:

$$ {\gamma}_a=\frac{\sum_{x\epsilon U}{\mu}_{POS_{P(Q)}(x)}}{\left|U\right|}=\frac{0.2+0.2+0.4+0.4+0.4+0.4}{6}=\frac{2}{6} $$

Same as above calculations, the dependency coefficients of feature ‘b’ and ‘c’ are:

$$ {\gamma}_b=\frac{2.4}{6},\kern0.75em {\gamma}_c=\frac{1.6}{6} $$

Because of γb is the greatest one, so feature ‘b’ is selected in the first level of feature reduction. In the next level, the dependency coefficients of the combinations of ‘b’ with the other features ‘a’ and ‘c’ are calculated:

$$ {\gamma}_{\left\{a,b\right\}}=\frac{3.4}{6},\kern0.75em {\gamma}_{\left\{b,c\right\}}=\frac{3.2}{6} $$

Because of γ{a, b} is the greatest one, so feature combination {a, b} is selected in the second level of feature reduction

In the third level, the dependency coefficient of the combination {a, b, c} is calculated:

$$ {\gamma}_{\left\{a,b,c\right\}}=\frac{3.4}{6} $$

Because of γ{a, b, c} = γ{a, b} then {a, b} is the final and minimal set of selected features and feature ‘c’ is removed

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvinnezhad, D., Delavar, M.R., Pijanowski, B.C. et al. Integration of adaptive neural fuzzy inference system and fuzzy rough set theory with support vector regression to urban growth modelling. Earth Sci Inform 14, 17–36 (2021). https://doi.org/10.1007/s12145-020-00522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-020-00522-0

Keywords

Navigation