Skip to main content
Log in

The t-wise intersection and trellis of relative four-weight codes

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Based on the applications of codes with few weights, we define the so-called relative four-weight codes and present a method for constructing such codes by using the finite projective geometry method. Also, the t-wise intersection and the trellis of relative four-weight codes are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, W.D., Kløve, T.: The weight hierarchies of q-ary codes of dimension 4. IEEE Trans. Inform. Theory 42(6), 2265–2272 (1996)

    Article  MathSciNet  Google Scholar 

  2. Cohen, G., Lempel, A.: Linear intersecting codes. Discrete Math. 56(1), 35–43 (1984)

    Article  MathSciNet  Google Scholar 

  3. Cohen, G., Zemor, G.: Intersecting codes and independent families. IEEE Trans. Inform. Theory 40(6), 1872–1881 (1994)

    Article  Google Scholar 

  4. Ding, K., Ding, C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inform. Theory 61(11), 5835–5842 (2015)

    Article  MathSciNet  Google Scholar 

  5. Encheva, S.B., Cohen, G.: Constructions of intersecting codes. IEEE Trans. Inform. Theory 45(4), 1234–1237 (1999)

    Article  MathSciNet  Google Scholar 

  6. Forney, G.D.: Dimension/length profiles and trellis complexity of linear block codes. IEEE Trans. Inform. Theory 40(6), 1741–1752 (1994)

    Article  MathSciNet  Google Scholar 

  7. Hu, Z., Li, N., Zeng, X.Z.: Linear codes with few weights derived from Kloosterman sums. Finite Fields Appl 62(10), 2020 (1608)

    MathSciNet  Google Scholar 

  8. Jian, G.P., Lin, Z.C., Feng, R.Q.: Two-weight and three-weight linear codes based on Weil sums. Finite Fields Appl 57, 92–107 (2019)

    Article  MathSciNet  Google Scholar 

  9. Li, X., Liu, Z.H.: The t-wise intersection of relative three-weight codes. Bull. Korean Math. Soc. 54(4), 1095–1110 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Liu, Z.H., Wu, X.W.: On relative constant-weight codes. Des. Codes Cryptogr. 75(1), 127–144 (2015)

    Article  MathSciNet  Google Scholar 

  11. Liu, Z.H., Wu, X.W.: Trellis complexity and pseudo redundancy of relative two-weight codes. Appl. Algebra Eng. Commun. Comput. 27(2), 139–158 (2016)

    Article  Google Scholar 

  12. Randrianarisoa, T.H.: A geometric approach to rank metric codes and a classification of constant weight codes. Des Codes Cryptogr. 88, 1331–1348 (2020)

    Article  MathSciNet  Google Scholar 

  13. Sagalovich, Yu.L.: Completely separating systems. Probl. Peredachi Inf. 18(2), 74–82 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Tsfasman, M.A., Vladuts, S.: Geometric approach to higher weights. IEEE Trans. Inform. Theory 41(part 1), 1564–1588 (1995)

    Article  MathSciNet  Google Scholar 

  15. Vardy, A., Be’ery, Y.: Maximum-likelihood soft decision decoding of BCH codes. IEEE Trans. Inform. Theory 40, 546–554 (1994)

    Article  Google Scholar 

  16. Wu, Y.S., Yue, Q., Shi, X.Y.: At most three-weights binary codes from generalized Moisio’s exponential sums. Des. Codes Cryptogr. 87(8), 1927–1943 (2019)

    Article  MathSciNet  Google Scholar 

  17. Ytrehus, O.: On the trellis complexity of certain binary linear block codes. IEEE Trans. Inform. Theory 41(2), 559–560 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rega.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Key Lemmas for Theorem 4.3

In order to prove all the major classes in Theorem 4.3, we introduce the first key lemma which will be used in the cases 3, 4, 5, 6 and 7 in which m1 < m2, m2 > m3 and m3 < m4. Then, the generator matrix G of C can be written in the following form (G,G3,G4) = (G1,G2) in which G1 consists of all points in PG(k − 1, 2) with each point repeating m1 times and all the points in S2S3S4, constitute the columns of G2 with each point repeating m2m1 times. Columns of the generator matrix G3 consist of all points of S3 and each point repeats m2m3 times and columns of the generator matrix G4 consist of all points of S4 and each point repeats m4m3 times. Then, G1 generates a k-dimensional constant- weight code \(C^{\prime }\) with weight m12k− 1 and length l1 = m12k − 1, G2 generates a (kk1)-dimensional weight code \(C^{\prime \prime }\) with weight \((m_{2}-m_{1})2^{k-k_{1}-1}\) and length \(l_{2}=(m_{2}-m_{1})2^{k-k_{1}}-1\), G3 generates a (kk2)-dimensional constant-weight code \(C^{\prime \prime \prime }\) with weight \((m_{2}-m_{3})2^{k-k_{2}-1}\) and length \(l_{3}=(m_{2}-m_{3})2^{k-k_{2}}-1\) and G4 generates a (kk3)-dimensional constant-weight code \(C^{\prime \prime \prime \prime }\) with weight \((m_{4}-m_{3})2^{k-k_{3}-1}\) and length \(l_{4}=(m_{4}-m_{3})2^{k-k_{3}}-1\). Let c1,⋯ ,ct be a relative (t,t1,t2,t3)(t3 < t2 < t1 < t) subcode.

Denote [ c1 c2ct ] = Xt×kG, [ c1′c2′ ⋮ ct′ ] = Xt×kG1, [ c1″c2″ ⋮ ct″ ] = Xt×kG2, [ c1″′c2″′ ⋮ ct″′ ] = Xt×kG3, [ c1″″c2″″ ⋮ ct″″ ] = Xt×kG4.

Then, we have for any i ∈{1, 2,⋯ ,t}, \((c_{i},c^{\prime \prime \prime }_{i},c^{\prime \prime \prime \prime }_{i})=(c^{\prime }_{i},c^{\prime \prime }_{i})\), where \(c^{\prime }_{i}\in C^{\prime }\), \(c^{\prime \prime }_{i}\in C^{\prime \prime }\), \(c^{\prime \prime \prime }_{i}\in C^{\prime \prime \prime }\) and \(c^{\prime \prime \prime \prime }_{i}\in C^{\prime \prime \prime \prime }.\) In addition that, \(c^{\prime }_{1},\cdots ,c^{\prime }_{t}\) are linearly independent codewords, whereas \(rank(c^{\prime \prime }_{1},\cdots , c^{\prime \prime }_{t}) =t-t_{1}\), \(rank(c^{\prime \prime \prime }_{1},\cdots , c^{\prime \prime \prime }_{t})=t-t_{2}\) and \(rank(c^{\prime \prime \prime \prime }_{1},\cdots , c^{\prime \prime \prime \prime }_{t})=t-t_{3}\) by Lemma 4.2. For satisfication, inter, inter1, inter2, inter3 and inter4 will be represented as follows. \(inter=|\bigcap ^{t}_{i=1}\chi (c_{i})|\), \(inter_{1}=|\bigcap ^{t}_{i=1}\chi (c^{\prime }_{i})|\), \(inter_{2}=|\bigcap ^{t}_{i=1}\chi (c^{\prime \prime }_{i})|\), \(inter_{3}=|\bigcap ^{t}_{i=1}\chi (c^{\prime \prime \prime }_{i})|\) and \(inter_{4}=|\bigcap ^{t}_{i=1}\chi (c^{\prime \prime \prime \prime }_{i})|\). Based on the Lemma 4.1, we have inter = inter1 + inter2inter3inter4 with \(inter_{1}=(\frac {1}{2})^{t-1}m_{1}2^{k-1}\), \(0\leq inter_{2}\leq (\frac {1}{2})^{t-t_{1}-1}(m_{2}-m_{1})2^{k-k_{1}-1}\), \(0\leq inter_{3}\leq (\frac {1}{2})^{t-t_{2}-1}(m_{2}-m_{3})2^{k-k_{2}-1}\) and \(0\leq inter_{4}\leq (\frac {1}{2})^{t-t_{3}-1}(m_{4}-m_{3})2^{k-k_{3}-1}\), then we have the following lemma.

Lemma A.1

Assume q = 2 and \(w_{3}>\max \limits \{w_{1},w_{2},w_{4}\}\) and let D =< c1,⋯ ,ct > be a relative (t,t1,t2,t3)(t3 < t2 < t1 < t) subcode of C with inter4≠ 0, then \(inter_{3}\leq (\frac {1}{2})^{t-t_{2}-1}(m_{3}-m_{2})2^{k-k_{2}-1}\).

Proof

Write [ c1 c2ct ] = Xt×kG, then similar to the proof of the Lemma 4.2, there exists an invertible matrix Yt×t such that

$$ \begin{array}{@{}rcl@{}} Y_{t\times t}X_{t\times k}&=& \begin{bmatrix} X^{\prime}_{t_{1}\times k_{1}} & 0_{t_{1}\times (k_{2}-k_{1})} & 0_{t_{1}\times (k_{3}-k_{2})} & 0_{t_{1}\times (k-k_{3})} \\ X^{\prime\prime}_{(t_{2}-t_{1})\times k_{1}} & X^{\prime\prime}_{(t_{2}-t_{1})\times (k_{2}-k_{1})} & 0_{(t_{2}-t_{1})\times (k_{3}-k_{2})} & 0_{(t_{2}-t_{1})\times (k-k_{3})} \\ X^{\prime\prime}_{(t_{3}-t_{2})\times k_{1}} & X^{\prime\prime}_{(t_{3}-t_{2})\times (k_{2}-k_{1})} & X^{\prime\prime}_{(t_{3}-t_{2})\times (k_{3}-k_{2})} & 0_{(t_{3}-t_{2})\times (k-k_{3})}\\ X^{\prime\prime\prime}_{(t-t_{3})\times k_{1}} & X^{\prime\prime\prime}_{(t-t_{3})\times (k_{2}-k_{1})} & X^{\prime\prime\prime}_{(t-t_{3})\times (k_{3}-k_{2})} & X^{\prime\prime\prime}_{(t-t_{3})\times (k-k_{3})} \end{bmatrix}, \end{array} $$

with \(rank(X^{\prime }_{t_{{1}\times k_{1}}})=t_{1}\), \(rank(X^{\prime \prime }_{(t_{2}-t_{1})\times (k_{2}-k_{1})})=t_{2}-t_{1}\), \(rank(X^{\prime \prime }_{(t_{3}-t_{2})\times (k_{3}-k_{2})})=t_{3}-t_{2}\) and \(rank(X^{\prime \prime \prime }_{(t-t_{3})\times (k-k_{3})})=t-t_{3}\).

Thus,

$$ Y_{t\times t}\left( \begin{array}{c|c} c^{\prime\prime\prime}_{1} & c^{\prime\prime\prime\prime}_{1}\\ \vdots&\vdots\\ c^{\prime\prime\prime}_{t} & c^{\prime\prime\prime\prime}_{t} \end{array}\right) =\left( \begin{array}{c|c} 0 & 0\\ \vdots&\vdots\\ 0 & 0\\ \overline{c}^{\prime\prime\prime}_{t_{2}+1} & 0\\ \vdots&\vdots\\ \overline{c}^{\prime\prime\prime}_{t_{3}} & 0\\ \overline{c}^{\prime\prime\prime}_{t_{3}+1} & \overline{c}^{\prime\prime\prime\prime}_{t_{3}+1}\\ \vdots&\vdots\\ \overline{c}^{\prime\prime\prime}_{t} & \overline{c}^{\prime\prime\prime\prime}_{t} \end{array}\right), $$
(A.1)

in which \(rank(\overline {c}^{\prime \prime \prime }_{t_{2}+1},\cdots , \overline {c}^{\prime \prime \prime }_{t})=t-t_{2}\) and \(rank(\overline {c}^{\prime \prime \prime \prime }_{t_{3}+1},\cdots , \overline {c}^{\prime \prime \prime \prime }_{t})=t-t_{3}\). We have \( rank\left (\begin {array}{c|c} c^{\prime \prime \prime }_{1} & c^{\prime \prime \prime \prime }_{1}\\ {\vdots } &\vdots \\ c^{\prime \prime \prime }_{t} & c^{\prime \prime \prime \prime }_{t} \end {array}\right )=t-t_{2}\). Without loss of generality, let \((c^{\prime \prime \prime }_{t_{2}+1},\cdots ,c^{\prime \prime \prime }_{t})\) be a maximal linearly independent set of \((c^{\prime \prime \prime }_{{1}},\cdots ,c^{\prime \prime \prime }_{t})\). Then, the last (tt2) rows of the matrix \(\left (\begin {array}{c|c} c^{\prime \prime \prime }_{1} & c^{\prime \prime \prime \prime }_{1}\\ \vdots &\vdots \\ c^{\prime \prime \prime }_{t} & c^{\prime \prime \prime \prime }_{t} \end {array}\right )\), which is \(\left (\begin {array}{c|c} c^{\prime \prime \prime }_{t_{2}+1} & c^{\prime \prime \prime \prime }_{t_{2}+1}\\ {\vdots } &\vdots \\ c^{\prime \prime \prime }_{t} & c^{\prime \prime \prime \prime }_{t} \end {array}\right )\), is a maximal linearly independent set of its all rows. So, there exists a matrix \(\begin {pmatrix} p_{1\times (t_{2}+1)}& {\cdots } &p_{1\times t}\\ {\vdots } & {\ddots } &\vdots \\ p_{t_{2}\times (t_{2}+1)}& \cdots & p_{t_{2}\times t}\\ \end {pmatrix}\)such that \(\left (\begin {array}{c|c} c^{\prime \prime \prime }_{1} & c^{\prime \prime \prime \prime }_{1}\\ {\vdots } &\vdots \\ c^{\prime \prime \prime }_{t} & c^{\prime \prime \prime \prime }_{t} \end {array}\right )=\begin {pmatrix} p_{1\times (t_{2}+1)}& {\cdots } &p_{1\times t}\\ {\vdots } & {\ddots } &\vdots \\ p_{t_{2}\times (t_{2}+1)}& {\cdots } & p_{t_{2}\times t}\\ \end {pmatrix} \left (\begin {array}{c|c} c^{\prime \prime \prime }_{t_{2}+1} & c^{\prime \prime \prime \prime }_{t_{2}+1}\\ {\vdots } &\vdots \\ c^{\prime \prime \prime }_{t} & c^{\prime \prime \prime \prime }_{t} \end {array}\right )\), that is

$$ \begin{pmatrix} c^{\prime\prime\prime}_{1}\\ \vdots\\ c^{\prime\prime\prime}_{t_{2}}\\ \end{pmatrix}=\begin{pmatrix} p_{1\times (t_{2}+1)}& {\cdots} &p_{1\times t}\\ {\vdots} & {\ddots} &\vdots\\ p_{t_{2}\times (t_{2}+1)}& {\cdots} & p_{t_{2}\times t}\\ \end{pmatrix} \left( \begin{array}{c} c^{\prime\prime\prime}_{t_{2}+1} \\ \vdots\\ c^{\prime\prime\prime}_{t} \end{array}\right) $$
(A.2)

and

$$ \begin{pmatrix} c^{\prime\prime\prime\prime}_{1}\\ \vdots\\ c^{\prime\prime\prime\prime}_{t_{2}}\\ \end{pmatrix}=\begin{pmatrix} p_{1\times (t_{2}+1)}& {\cdots} &p_{1\times t}\\ {\vdots} & {\ddots} &\vdots\\ p_{t_{2}\times (t_{2}+1)}& {\cdots} & p_{t_{2}\times t}\\ \end{pmatrix} \left( \begin{array}{c} c^{\prime\prime\prime\prime}_{t_{2}+1} \\ \vdots\\ c^{\prime\prime\prime\prime}_{t} \end{array}\right). $$
(A.3)

Based on (A.3) and \(rank(c^{\prime \prime \prime \prime }_{1}, \cdots , c^{\prime \prime \prime \prime }_{t_{1}})=t-t_{3}\), without loss of generality, we assume \((c^{\prime \prime \prime \prime }_{t_{3}+1},\cdots , c^{\prime \prime \prime \prime }_{t})\) to be a maximal linearly independent set of \((c^{\prime \prime \prime \prime }_{1},\cdots ,c^{\prime \prime \prime \prime }_{t}).\) Then, there exists a matrix \(\begin {pmatrix} r_{(t_{2}+1)\times (t_{3}+1)}& {\cdots } &r_{(t_{2}+1)\times t}\\ {\vdots } & {\ddots } &\vdots \\ r_{t_{3}\times (t_{3}+1)}& {\cdots } & r_{t_{3}\times t}\\ \end {pmatrix}\), such that

$$ \begin{pmatrix} c^{\prime\prime\prime\prime}_{t_{2}+1}\\ \vdots\\ c^{\prime\prime\prime\prime}_{t_{3}}\\ \end{pmatrix} =\begin{pmatrix} r_{(t_{2}+1)\times (t_{3}+1)}& {\cdots} &r_{(t_{2}+1)\times t}\\ {\vdots} & {\ddots} &\vdots\\ r_{t_{3}\times (t_{3}+1)}& {\cdots} & r_{t_{3}\times t}\\ \end{pmatrix}\begin{pmatrix} c^{\prime\prime\prime\prime}_{t_{3}+1}\\ \vdots\\ c^{\prime\prime\prime\prime}_{t}\\ \end{pmatrix}. $$
(A.4)

Substitute the (A.4) in (A.3), we get

$$ \begin{pmatrix} c^{\prime\prime\prime\prime}_{1}\\ \vdots\\ c^{\prime\prime\prime\prime}_{t_{2}}\\ \end{pmatrix}= \begin{pmatrix} p_{1\times (t_{2}+1)}& {\cdots} &p_{1\times t}\\ {\vdots} & {\ddots} &\vdots\\ p_{t_{2}\times (t_{2}+1)}& {\cdots} & p_{t_{2}\times t}\\ \end{pmatrix} \begin{pmatrix} r_{(t_{2}+1)\times (t_{3}+1)}& {\cdots} &r_{(t_{2}+1)\times t}\\ {\vdots} & {\ddots} &\vdots\\ r_{t_{3}\times (t_{3}+1)}& {\cdots} & r_{t_{3}\times t}\\ 1& {\cdots} &0\\ {\vdots} & {\ddots} &\vdots\\ 0& {\cdots} & 1\\ \end{pmatrix} \begin{pmatrix} c^{\prime\prime\prime\prime}_{t_{3}+1}\\ \vdots\\ c^{\prime\prime\prime\prime}_{t}\\ \end{pmatrix}. $$
(A.5)

Since inter4≠ 0, there must be a co-ordinate position j0 ∈{1, 2,⋯ ,l4} such that \(j_{0}\in \chi (c^{\prime \prime \prime \prime }_{i})\), ∀1 ≤ it.

Then, (A.4) implies that \(\begin {pmatrix} r_{(t_{2}+1)\times (t_{3}+1)}& {\cdots } &r_{(t_{2}+1)\times t}\\ {\vdots } & {\ddots } &\vdots \\ r_{t_{3}\times (t_{3}+1)}& {\cdots } & r_{t_{3}\times t}\\ \end {pmatrix}\begin {pmatrix} 1\\ \vdots \\ 1\\ \end {pmatrix}=\begin {pmatrix} 1\\ \vdots \\ 1\\ \end {pmatrix}\) and (A.5) implies \(\begin {pmatrix} p_{1\times (t_{2}+1)}& {\cdots } &p_{1\times t}\\ {\vdots } & {\ddots } &\vdots \\ p_{t_{2}\times (t_{2}+1)}& {\cdots } & p_{t_{2}\times t}\\ \end {pmatrix} \begin {pmatrix} r_{(t_{2}+1)\times (t_{3}+1)}& {\cdots } &r_{(t_{2}+1)\times t}\\ {\vdots } & {\ddots } &\vdots \\ r_{t_{3}\times (t_{3}+1)}& {\cdots } & r_{t_{3}\times t}\\ 1& {\cdots } &0\\ {\vdots } & {\ddots } &\vdots \\ 0& {\cdots } & 1\\ \end {pmatrix} \begin {pmatrix} 1\\ \vdots \\ 1\\ \end {pmatrix}=\begin {pmatrix} 1\\ \vdots \\ 1\\ \end {pmatrix}\).

Thus,

$$ \begin{pmatrix} p_{1\times (t_{2}+1)}& {\cdots} &p_{1\times t}\\ {\vdots} & {\ddots} &\vdots\\ p_{t_{2}\times (t_{2}+1)}& {\cdots} & p_{t_{2}\times t}\\ \end{pmatrix} \begin{pmatrix} 1\\ \vdots\\ 1\\ \end{pmatrix}=\begin{pmatrix} 1\\ \vdots\\ 1\\ \end{pmatrix}. $$
(A.6)

We set \(\cap ^{t}_{i=t_{2}+1}\chi (c^{\prime \prime \prime }_{i})=\{j_{1},j_{2},\cdots ,j_{r}\}\) and let \(\begin {pmatrix} 1& {\cdots } &1\\ {\vdots } & {\ddots } &\vdots \\ 1& {\cdots } & 1\\ \end {pmatrix}\)bethe matrix which consists of the \(\mathrm {j}_{1}^{\text {th}},~\mathrm {j}_{2}^{\text {th}},~\cdots ,~\mathrm {j}_{r}^{\text {th}}\) columns of the matrix \(\left (\begin {array}{c} c^{\prime \prime \prime }_{t_{2}+1} \\ \vdots \\ c^{\prime \prime \prime }_{t} \end {array}\right )\). From (A.2) and (A.6), we have \(\begin {pmatrix}\label {f} p_{1\times (t_{2}+1)}& {\cdots } &p_{1\times t}\\ {\vdots } & {\ddots } &\vdots \\ p_{t_{2}\times (t_{2}+1)}& {\cdots } & p_{t_{2}\times t}\\ \end {pmatrix} \begin {pmatrix} 1& {\cdots } &1\\ {\vdots } & {\ddots } &\vdots \\ 1& {\cdots } & 1\\ \end {pmatrix}=\begin {pmatrix} 1& {\cdots } &1\\ {\vdots } & {\ddots } &\vdots \\ 1& {\cdots } & 1\\ \end {pmatrix}\), which gives \( \bigcap ^{t}_{i=1}\chi (c_{i}^{\prime \prime \prime })=\bigcap ^{t}_{i=t_{2}+1}\chi (c_{i}^{\prime \prime \prime })\). When \(inter_{3}=|\bigcap ^{t}_{i=t_{2}+1}\chi (c_{i}^{\prime \prime \prime })|\), we will get \(inter_{3}=(\frac {1}{2})^{t-t_{2}-1}(m_{3}-m_{2})2^{k-k_{2}-1}.\)

Since \((c^{\prime \prime }_{t_{2}+1},\cdots ,c^{\prime \prime }_{t})\) are tt2 linearly independent codewords of constant-weight \(c^{\prime \prime \prime }\) with weight \((m_{3}-m_{2})2^{k-k_{2}-1}\), using Lemma 4.1, it will follow that \(|\bigcap ^{t}_{i=t_{2}+1}\chi (c^{\prime \prime \prime }_{i})|=(\frac {1}{2})^{t-t_{2}-1}(m_{3}-m_{2})2^{k-k_{2}-1}.\) Thus, \(inter_{3}=(\frac {1}{2})^{t-t_{2}-1}(m_{3}-m_{2})2^{k-k_{2}-1}.\)

We introduce the second key lemma in the cases 8, 9 and 10 in which m1 < m2, m2 < m3 and m3 > m4 holds. Their generator matrix G of the code C can be written as (G,G3,G4) = (G1,G2) in which G1 consists of all points in PG(k − 1, 2) with each point repeating m1 times and all the points in S2S3S4 constitute the columns of G2 with each point repeating m2m1 times. Columns of the generator matrix G3 consist of all points of S3 and each point repeats m3m2 times and columns of the generator matrix G4 consist of all points of S4 and each point repeats m3m4 times. Then, G1 generates a k-dimensional constant-weight code \(C^{\prime }\) with weight m12k− 1 and length l1 = m1(2k − 1), G2 generates a (kk1)-dimensional weight code \(C^{\prime \prime }\) with weight \((m_{2}-m_{1})2^{k-k_{1}-1}\) and length \(l_{2}=(m_{2}-m_{1})(2^{k-k_{1}}-1)\), G3 generates a (kk2)-dimensional weight code \(C^{\prime \prime \prime }\) with weight \((m_{3}-m_{2})2^{k-k_{2}-1}\) and length \(l_{3}=(m_{3}-m_{2})(2^{k-k_{2}}-1)\) and G4 generates a (kk3)-dimensional weight code \(C^{\prime \prime \prime \prime }\) with weight \((m_{3}-m_{4})2^{k-k_{3}-1}\) and length \(l_{4}=(m_{3}-m_{4})(2^{k-k_{3}}-1)\). Assume that c1,⋯ ,ct with the matrix form \(\begin {pmatrix} c_{1}\\ \vdots \\ c_{t}\\ \end {pmatrix}=X_{t\times k}G\), are any t linearly independent codewords in C. Obviously, for any i ∈{1, 2,⋯ ,t}, we have \((c_{i},c_{i}^{\prime \prime \prime },c_{i}^{\prime \prime \prime \prime })=(c_{i}^{\prime },c_{i}^{\prime \prime })\), where \(c_{i}^{\prime }\in C^{\prime }\), \(c_{i}^{\prime \prime }\in C^{\prime \prime }\), \(c_{i}^{\prime \prime \prime }\in C^{\prime \prime \prime }\) and \(c_{i}^{\prime \prime \prime \prime }\in C^{\prime \prime \prime \prime }\). Additionally \(rank(c_{1}^{\prime },\cdots ,c_{t}^{\prime })=t\), based on Lemma 4.2, we have \(rank(c_{1}^{\prime \prime },\cdots ,c_{t}^{\prime \prime })=t-t_{1}\), \(rank(c_{1}^{\prime \prime \prime },\cdots ,c_{t}^{\prime \prime \prime })=t-t_{2}\) and \(rank(c_{1}^{\prime \prime \prime \prime },\cdots ,c_{t}^{\prime \prime \prime \prime })=t-t_{3}\). Furthermore, inter = inter1 + inter2inter3inter4 with \(inter_{1}=(\frac {1}{2})^{t-1}m_{1}2^{k-1}\), \(0\leq inter_{2}\leq (\frac {1}{2})^{t-t_{1}-1}(m_{2}-m_{1})2^{k-k_{1}-1}\), \(0\leq inter_{3}\leq (\frac {1}{2})^{t-t_{2}-1}(m_{3}-m_{2})2^{k-k_{2}-1}\) and \(0\leq inter_{4}\leq (\frac {1}{2})^{t-t_{3}-1}(m_{3}-m_{4})2^{k-k_{3}-1}\) by Lemma 4.1.

We introduce the third key lemma in cases 11, 12, 13, 14 and 15 in which we deduce that w1 is greater than w2, w2 is less than w3 and w3 is greater than w4 yields m1 > m2, m2 < m3 and m3 > m4. Then, the generator matrix G of C can be written in the following form (G,G1) = (G2,G3,G4) in which the block matrix G1 consists of all points in S2S3S4 and constitute the columns of G1 with each point repeating m1m2 times. G2 consists of all points in PG(k − 1, 2) and each point appears m1 times. All points in S3 constitute columns of G3 and each point occurs m3m2 times and all the points in S4 constitute columns of G4 and each point occurs m3m4 times. Thus, G1 generates a (kk1)-dimensional constant-weight code \(C^{\prime }\) with weight \((m_{1}-m_{2})2^{k-k_{1}-1}\) and length \(l_{1}=(m_{1}-m_{2})(2^{k-k_{1}}-1)\). G2 generates a k- dimensional constant-weight code \(C^{\prime \prime }\) with weight m12k− 1 and length l2 = m1(2k − 1). G3 generates a (kk2)-dimensional constant-weight code \(C^{\prime \prime \prime }\) with weight \((m_{3}-m_{2})2^{k-k_{2}-1}\) and length \(l_{3}=(m_{3}-m_{2})(2^{k-k_{2}}-1)\) and G4 generates (kk3)-dimensional constant-weight \((m_{3}-m_{4})2^{k-k_{3}-1}\) and length \(l_{4}=(m_{3}-m_{4})(2^{k-k_{3}}-1).\) Assume that, c1,⋯ ,ct are any t linearly independent codewords with the matrix form \(\begin {pmatrix} c_{1}\\ \vdots \\ c_{t}\\ \end {pmatrix}=X_{t\times k}G\), \(\begin {pmatrix} c_{1}^{\prime }\\ \vdots \\ c_{t}^{\prime }\\ \end {pmatrix}=X_{t\times k}G_{1}\), \(\begin {pmatrix} c_{1}^{\prime \prime }\\ \vdots \\ c_{t}^{\prime \prime }\\ \end {pmatrix}=X_{t\times k}G_{2}\), \(\begin {pmatrix} c_{1}^{\prime \prime \prime }\\ \vdots \\ c_{t}^{\prime \prime \prime }\\ \end {pmatrix}=X_{t\times k}G_{3}\) and \(\begin {pmatrix} c_{1}^{\prime \prime \prime \prime }\\ \vdots \\ c_{t}^{\prime \prime \prime \prime }\\ \end {pmatrix}=X_{t\times k}G_{4}\). Obviously, for any i ∈{1, 2,⋯ ,t}, we have \((c_{i},c_{i}^{\prime })=(c_{i}^{\prime \prime },c_{i}^{\prime \prime \prime },c_{i}^{\prime \prime \prime \prime })\), where \(c_{i}^{\prime }\in C^{\prime }\), \(c_{i}^{\prime \prime }\in C^{\prime \prime }\), \(c_{i}^{\prime \prime \prime }\in C^{\prime \prime \prime }\) and \(c_{i}^{\prime \prime \prime \prime }\in C^{\prime \prime \prime \prime }\). Additionally, \(rank(c_{1}^{\prime \prime },\cdots ,c_{t}^{\prime \prime })=t\). From Lemma 4.2, we have \(rank(c_{1}^{\prime },\cdots ,c_{t}^{\prime })=(t-t_{1})\), \(rank(c_{1}^{\prime \prime },\cdots ,c_{t}^{\prime \prime })=t-t_{2}\), \(rank(c_{1}^{\prime \prime \prime },\cdots ,c_{t}^{\prime \prime \prime })=t-t_{3}\) and \(rank(c_{1}^{\prime \prime \prime \prime },\cdots ,c_{t}^{\prime \prime \prime \prime })=t-t_{3}.\) Therefore, we have inter = inter2 + inter3 + inter4inter1 with \(inter_{2}=(\frac {1}{2})^{t-1}m_{1}2^{k-1}\), \(0\leq inter_{1}\leq (\frac {1}{2})^{t-t_{1}-1}(m_{1}-m_{2})2^{k-k_{1}-1}\), \(0\leq inter_{3}\leq (\frac {1}{2})^{t-t_{2}-1}(m_{3}-m_{2})2^{k-k_{2}-1}\) and \(0\leq inter_{4}\leq (\frac {1}{2})^{t-t_{3}-1}(m_{3}-m_{4})2^{k-k_{3}-1}\) by Lemma 4.1.

We apply the fourth key lemma in the cases 16, 17 and 18 in which m1 > m2, m2 < m3 and m3 < m4. Then, the generator matrix G can be written in the following form (G,G1,G4) = (G2,G3) in which the block matrix G1 includes all the points in S2S3S4, which constitute the columns of G1 with each point repeating m1m2 times. Columns of the generator matrix G2 consist of all points in PG(k − 1, 2) and each point appears m1 times and all points in S3 constitute columns of G3 and each point occurs m3m2 times, columns of the generator matrix G4 consist of all points of S4 and each point repeats m4m3 times. Then, G1 generates a (kk1)-dimensional constant-weight code \(C^{\prime }\) with weight \((m_{1}-m_{2})2^{k-k_{1}-1}\) and length \(l_{1}=(m_{1}-m_{2})(2^{k-k_{1}}-1)\). G2 generates a k-dimensional constant-weight code \(C^{\prime \prime }\) with weight m12k− 1 and length l2 = m1(2k − 1), G3 generates (kk3)-dimensional constant-weight code \(C^{\prime \prime \prime }\) with weight \((m_{3}-m_{2})2^{k-k_{2}-1}\) and length \(l_{3}=(m_{3}-m_{2})(2^{k-k_{2}}-1)\) and G4 generates (kk4)-dimensional constant-weight \((m_{4}-m_{3})2^{k-k_{3}-1}\) and length \(l_{4}=(m_{4}-m_{3})(2^{k-k_{3}}-1).\) Using the same procedure as above, we get the intersection inter = inter2 + inter3inter1inter4 with \(inter_{2}=(\frac {1}{2})^{t-1}m_{1}2^{k-1}\), \(0\leq inter_{1}\leq (\frac {1}{2})^{t-t_{1}-1}(m_{1}-m_{2})2^{k-k_{1}-1}\), \(0\leq inter_{3}\leq (\frac {1}{2})^{t-t_{2}-1}(m_{3}-m_{2})2^{k-k_{2}-1}\) and \(0\leq inter_{4}\leq (\frac {1}{2})^{t-t_{3}-1}(m_{4}-m_{3})2^{k-k_{3}-1}\).

Next, we apply the fifth key lemma in the cases 19, 20 and 21 in which m1 > m2, m2 > m3 and m3 < m4. Then, the generator matrix G of C can be written in the following form (G,G1,G2) = (G3,G4) in which the block matrix G1 consists of all points in S2S3S4, constitute the columns of G1 with each point repeating m1m2 times. Columns of the generator matrix G2 consist of all points of S3 and each point repeats m2m3 times and columns of the generator matrix G4 consist of all points of S4 and each point repeats m2m3 times. G3 consists of all points in PG(k − 1, 2) and each point appears m1 times and all the points in S4, constitute columns of G4 and each point occurs m3m4 times. Then, G1 generates a (kk1)-dimensional constant-weight code \(C^{\prime }\) with weight \((m_{1}-m_{2})2^{k-k_{1}-1}\) and length \(l_{1}=(m_{1}-m_{2})(2^{k-k_{1}}-1)\). G2 generates (kk2)-dimensional constant-weight code \(C^{\prime \prime }\) with weight \((m_{2}-m_{3})2^{k-k_{2}-1}\) and length \(l_{2}=(m_{2}-m_{3})(2^{k-k_{2}}-1)\), G3 generates a k-dimensional constant-weight code \(C^{\prime \prime \prime }\) with weight m12k− 1 and length l3 = m1(2k − 1) and G4 generates (kk3)-dimensional constant-weight \((m_{4}-m_{3})2^{k-k_{3}-1}\) and length \(l_{4}=(m_{4}-m_{3})(2^{k-k_{3}}-1)\). Similar to this, using the above procedure, we have inter = inter3 + inter4inter1inter2 with \(inter_{3}=(\frac {1}{2})^{t-1}m_{1}2^{k-1}\), \(0\leq inter_{1}\leq (\frac {1}{2})^{t-t_{1}-1}(m_{1}-m_{2})2^{k-k_{1}-1}\), \(0\leq inter_{2}\leq (\frac {1}{2})^{t-t_{2}-1}(m_{2}-m_{3})2^{k-k_{2}-1}\) and \(0\leq inter_{4}\leq (\frac {1}{2})^{t-t_{3}-1}(m_{4}-m_{3})2^{k-k_{3}-1}\) by Lemma 4.1.

Again, we use the sixth key lemma in the cases 22, 23 and 24 in which m1 < m2, m2 > m3 and m3 > m4. Then, the generator matrix G of C can be written in the following form (G,G2,G3,G4) = (G1) in which the block matrix G1 consists of all points in PG(k − 1, 2) and each point appears m1 times. Columns of the generator matrix G2 consist of all points of S2S3S4 and each point repeats m2m1 times. All points in S3 constitute columns of G3 and each point occurs m2m3 times , G4 consists of all points in S4 and each point appears m3m4 times. Thus, G1 generates a k-dimensional constant-weight code \(C^{\prime }\) with weight m12k− 1 and length l1 = m1(2k − 1), G2 generates (kk1)-dimensional constant-weight code \(C^{\prime \prime }\) with weight \((m_{2}-m_{1})2^{k-k_{1}-1}\) and length \(l_{2}=(m_{2}-m_{1})(2^{k-k_{1}}-1)\), G3 generates (kk2)-dimensional constant-weight code \(C^{\prime \prime \prime }\) with weight \((m_{2}-m_{3})(2^{k-k_{2}-1})\) and length \(l_{3}=(m_{2}-m_{3})2^{k-k_{2}}-1\) and G4 generates a k-dimensional constant-weight code \(C^{\prime \prime \prime \prime }\) with weight \((m_{3}-m_{4})2^{k-k_{3}-1}\) and length \(l_{4}=(m_{3}-m_{4})(2^{k-k_{3}}-1).\) Likewise, using the same procedure as above, we have inter = inter1inter2inter3inter4 with \(inter_{1}=(\frac {1}{2})^{t-1}m_{1}2^{k-1}\), \(0\leq inter_{2}\leq (\frac {1}{2})^{t-t_{1}-1}(m_{2}-m_{1})2^{k-k_{1}-1}\), \(0\leq inter_{3}\leq (\frac {1}{2})^{t-t_{2}-1}(m_{2}-m_{3})2^{k-k_{2}-1}\) and \(0\leq inter_{4}\leq (\frac {1}{2})^{t-t_{3}-1}(m_{3}-m_{4})2^{k-k_{3}-1}\) by Lemma 4.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rega, B., Liu, Z.H. & Durairajan, C. The t-wise intersection and trellis of relative four-weight codes. Cryptogr. Commun. 13, 197–223 (2021). https://doi.org/10.1007/s12095-020-00456-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-020-00456-w

Keywords

Mathematics Subject Classification (2010)

Navigation