Skip to main content
Log in

Redox state determination of eclogite xenoliths from Udachnaya kimberlite pipe (Siberian craton), with some implications for the graphite/diamond formation

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The formation of diamonds within eclogitic rocks has been widely linked to the fate of carbon during subduction and, therefore, referred to conditions of pressure, temperature, and oxygen fugacity (fo2). Mantle-derived eclogite xenoliths from Udachnaya kimberlite pipes represent a unique window to investigate the formation of carbon-free, graphite–diamond-bearing and diamond-bearing rocks from the Siberian craton. With this aim, we exploited oxy-thermobarometers to retrieve information on the PTfo2 at which mantle eclogites from the Siberian craton equilibrated along with elemental carbon. The chemical analyses of coupled garnet and omphacitic clinopyroxene were integrated with data on their iron oxidation state, determined both by conventional and synchrotron 57Fe Mössbauer spectroscopy. The calculated fo2s largely vary for each suite of eclogite samples from 0.10 to − 2.43 log units (ΔFMQ) for C-free eclogites, from − 0.01 to − 2.91 (ΔFMQ) for graphite–diamond-bearing eclogites, and from − 2.08 to − 3.58 log units (ΔFMQ) for diamond-bearing eclogites. All eclogite samples mostly fall in the fo2 range typical of diamond coexisting with CO2-rich water-bearing melts and gaseous fluids, with diamondiferous eclogites being more reduced at fo2 conditions where circulating fluids can include some methane. When uncertainties on the calculated fo2 are taken into account, all samples essentially fall within the stability field of diamonds coexisting with CO2-bearing melts. Therefore, our results provide evidence of the potential role of CO2-bearing melts as growth medium on the formation of coexisting diamond and graphite in mantle eclogites during subduction of the oceanic crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amthauer G, Annerste H, Hafner SS (1976) The Mössbauer spectrum of 57Fe in silicate garnets. Zeitschrift Für Kristallographie Crystall Mater 143:14–55

    Google Scholar 

  • Aulbach S, Gerdes A, Viljoen KS (2016) Formation of diamondiferous kyanite–eclogite in a subduction mélange. Geochim Cosmochim Acta 179:156–176

    Google Scholar 

  • Aulbach S, Stagno V (2016) Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology 44:751–754

    Google Scholar 

  • Aulbach S, Viljoen KS (2015) Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton: from convecting mantle source to palaeo-ocean floor and back. Earth Planet Sci Lett 431:274–286

    Google Scholar 

  • Aulbach S, Woodland AB, Stern RA, Vasilyev P, Heaman LM, Viljoen KS (2019) Evidence for a dominantly reducing Archaean ambient mantle from two redox proxies, and low oxygen fugacity of deeply subducted oceanic crust. Sci Rep 9:20190

    Google Scholar 

  • Aulbach S, Woodland AB, Vasilyev P, Galvez ME, Viljoen KS (2017) Effects of low-pressure igneous processes and subduction on Fe3+/ΣFe and redox state of mantle eclogites from Lace (Kaapvaal craton). Earth Planet Sci Lett 474:283–295

    Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petr 107:27–40

    Google Scholar 

  • Beard B, Fraracci KN, Clayton RA, Mayeda TK, Snyder GA, Sobolev NV, Taylor LA (1996) Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contrib Mineral Petr 125:293–310

    Google Scholar 

  • Beyer C, Frost DJ, Miyajima N (2015) Experimental calibration of a garnet–clinopyroxene geobarometer for mantle eclogites. Contrib Mineral Petr 169:18

    Google Scholar 

  • Bobrievich AP, Smirnov GI, Sobolev VS (1959) Eclogite xenolith with diamonds. Doklady Akademii Nauk SSSR 126:637–640

    Google Scholar 

  • Boyd FR (1984) Siberian geotherm based on Iherzolite xenoliths from the Udachnaya kimberlite, USSR. Geology 12:528–530

    Google Scholar 

  • Carswell DA, Dawson JB, Gibb FG (1981) Equilibration conditions of upper-mantle eclogites: implications for kyanite-bearing and diamondiferous varieties. Mineral Mag 44:79–89

    Google Scholar 

  • Cerantola V, Bykova E, Mccammon C, Merlini M, Dubrovinsky L (2015) Investigation on the stability of FeCO3 down to the core mantle boundary. In: Egu general assembly conference

  • Coleman RG, Lee DE, Beatty LB, Brannock WW (1965) Eclogites and eclogites: their differences and similarities. Geol Soc Am Bull 76:483–508

    Google Scholar 

  • Creighton S, Stachel T, Eichenberg D, Luth RW (2010) Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada. Contrib Mineral Petr 159:645–657

    Google Scholar 

  • Dasgupta R, Mallik A, Tsuno K, Withers AC, Hirth G, Hirschmann MM (2013) Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493:211

    Google Scholar 

  • Davies GR, Nixon PH, Pearson DG, Obata M (1993) Tectonic implications of graphitized diamonds from the Ronda, peridotite massif, southern Spain. Geology 21:471–474

    Google Scholar 

  • Day HW (2012) A revised diamond-graphite transition curve. Am Miner 97:52–62

    Google Scholar 

  • Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth-Sci Rev 58:247–278. https://doi.org/10.1016/S0012-8252(02)00064-8

    Article  Google Scholar 

  • Dongre AN, Jacob DE, Stern RA (2015) Subduction-related origin of eclogite xenoliths from the Wajrakarur kimberlite field, Eastern Dharwar craton, Southern India: Constraints from petrology and geochemistry. Geochim Cosmochim Ac 166:165–188

    Google Scholar 

  • Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contrib Mineral Petr 71:13–22

    Google Scholar 

  • Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420

    Google Scholar 

  • Galimov EM (1991) Isotope fractionation related to kimberlite magmatism and diamond formation. Geochim Cosmochim Ac 55:1697–1708. https://doi.org/10.1016/0016-7037(91)90140-Z

    Article  Google Scholar 

  • Gréau Y, Huang J-X, Griffin WL, Renac C, Alard O, O’Reilly SY (2011) Type I eclogites from Roberts Victor kimberlites: products of extensive mantle metasomatism. Geochim Cosmochim Ac 75:6927–6954

    Google Scholar 

  • Gudmundsson G, Wood BJ (1995) Experimental tests of garnet peridotite oxygen barometry. Contrib Mineral Petr 119:56–67

    Google Scholar 

  • Haggerty SE (1986) Diamond genesis in a multiply-constrained model. Nature 320:34–37. https://doi.org/10.1038/320034a0

    Article  Google Scholar 

  • Haggerty SE (1999) A diamond trilogy: superplumes, supercontinents, and supernovae. Science 285:851–860

    Google Scholar 

  • Hammouda T, Keshav S (2015) Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites. Chem Geol 418:171–188

    Google Scholar 

  • Harris JW (1992) Diamond geology. In: Field J (ed) The properties of natural and synthetic diamond. Springer, New York, pp 345–393

    Google Scholar 

  • Hatton CJ (1978) The geochemistry and origin of xenoliths from the Roberts Victor mine. PhD thesis, University of Cape Town

  • Howarth GH et al (2015) 3-D X-ray tomography of diamondiferous mantle eclogite xenoliths, Siberia: a review. J Asian Earth Sci 101:39–67

    Google Scholar 

  • Jerde EA, Taylor LA, Crozaz G, Sobolev NV, Sobolev VN (1993) Diamondiferous eclogites from Yakutia, Siberia: evidence for a diversity of protoliths. Contrib Mineral Petr 114:189–202

    Google Scholar 

  • Khokhryakov AF, Nechaev DV, Sokol AG, Palyanov YN (2009) Formation of various types of graphite inclusions in diamond: Experimental data. Lithos 112:683–689. https://doi.org/10.1016/j.lithos.2009.05.010

    Article  Google Scholar 

  • Kiseeva ES et al (2018) Oxidized iron in garnets from the mantle transition zone. Nat Geosci 11:144–147

    Google Scholar 

  • Kopylova MG, Beausoleil Y, Goncharov A, Burgess J, Strand P (2016) Spatial distribution of eclogite in the Slave cratonic mantle: the role of subduction. Tectonophysics 672:87–103

    Google Scholar 

  • Korsakov AV, Perraki M, Zedgenizov DA, Bindi L, Vandenabeele P, Suzuki A, Kagi H (2010) Diamond-graphite relationships in ultrahigh-pressure metamorphic rocks from the Kokchetav Massif, Northern Kazakhstan. J Petrol 51:763–783

    Google Scholar 

  • Lagarec K, Rancourt DG (1999) A new model for multidimensional distributions of hyperfine parameters in Mossbauer spectroscopy. In: Kodama H, Mermut AR, Torrance JK (eds) 11th International Clay Conference, Ottawa, Canada, 1999. ICC-97 Organizin committe, Ottawa, Canada, p 825

  • Lavrent’ev YG, Karmanov NS, Usova LV (2015) Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope? Russ Geol Geophys 56:1154–1161

    Google Scholar 

  • Leung I, Guo W, Friedman I, Gleason J (1990) Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian. Nature 346:874–874

    Google Scholar 

  • Liu Y et al (2009) Metasomatic origin of diamonds in the world’s largest diamondiferous eclogite. Lithos 112:1014–1024

    Google Scholar 

  • Luth RW (1993) Diamonds, eclogites, and the oxidation state of the Earth’s mantle. Science 261:66–68

    Google Scholar 

  • Luth RW (2001) Experimental determination of the reaction Aragonite+Magnesite= Dolomite at 5 to 9 GPa. Contrib Mineral Petr 141:222–232

    Google Scholar 

  • Luth RW, Stachel T (2014) The buffering capacity of lithospheric mantle: implications for diamond formation. Contrib Mineral Petr 168:1083

    Google Scholar 

  • Luth RW, Virgo D, Boyd FR, Wood BJ (1990) Ferric iron in mantle-derived garnets. Contrib Mineral Petr 104:56–72

    Google Scholar 

  • Massonne HJ (1998) A new occurrence of microdiamonds in quartzofeldspathic rocks of the Saxonian Erzgebirge, Germany, and their metamorphic evolution. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) 7th International Kimberlite Conference: extended abstracts, Cape Town, South Africa, 1998. vol 1. Red Roof Design, pp 552–554

  • Matjuschkin V, Woodland AB, Frost DJ, Yaxley GM (2020) Reduced methane-bearing fluids as a source for diamond. Sci Rep 10:1–8

    Google Scholar 

  • Matveev S, Ballhaus C, Fricke K, Truckenbrodt J, Ziegenbein D (1997) Volatiles in the Earth’s mantle: I. Synthesis of CHO fluids at 1273 K and 2.4 GPa. Geochim Cosmochim Ac 61:3081–3088. https://doi.org/10.1016/S0016-7037(97)00142-7

    Article  Google Scholar 

  • McCammon CA, Griffin WL, Shee SR, O’Neill HS (2001) Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: implications for the survival of diamond. Contrib Mineral Petr 141:287–296. https://doi.org/10.1007/s004100100244

    Article  Google Scholar 

  • Meyer HOA (1987) Mantle xenoliths. Wiley, Chichester

    Google Scholar 

  • Mikhailenko DS, Korsakov AV, Zelenovskiy PS, Golovin AV (2016) Graphite–diamond relations in mantle rocks: evidence from an eclogitic xenolith from the Udachnaya kimberlite (Siberian Craton). Am Miner 101:2155–2167

    Google Scholar 

  • Morimoto N (1989) Nomenclature of pyroxenes. Mineral J 14:198–221

    Google Scholar 

  • Nakamura D (2009) A new formulation of garnet–clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set. J Metamorph Geol 27:495–508

    Google Scholar 

  • Navon O, Hutcheon ID, Rossman GR, Wasserburg GJ (1988) Mantle-derived fluids in diamond micro-inclusions. Nature 335:784–789. https://doi.org/10.1038/335784a0

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (1995) Trace-element partitioning between garnet and clinopyroxene in mantle-derived pyroxenites and eclogites: PTX controls. Chem Geol 121:105–130

    Google Scholar 

  • Orlov UL (1977) The mineralogy of the diamond. Wiley, New York

    Google Scholar 

  • Pal’yanov YN, Sokol AG, Khokhryakov AF, Sobolev NV (2010) Experimental study of interaction in the CO2-C system at mantle PT parameters. Dokl Earth Sci 435:1492

    Google Scholar 

  • Pearson DG, Boyd FR, Haggerty SE, Pasteris JD, Field SW, Nixon PH, Pokhilenko NP (1994) The characterisation and origin of graphite in cratonic lithospheric mantle: a petrological carbon isotope and Raman spectroscopic study. Contrib Mineral Petr 115:449–466

    Google Scholar 

  • Pearson DG, Davies GR, Nixon PH, Milledge HJ (1989) Graphitized diamonds from a peridotite massif in Morocco and implications for anomalous diamond occurrences. Nature 338:60–62

    Google Scholar 

  • Pokhilenko NP, Sobolev NV, Yefimova YS (1982) Xenolith of deformed diamond-bearing kyanite eclogite from the Udachnaya pipe, Yakutia. Doklady Akademii Nauk SSSR 266:212–216

    Google Scholar 

  • Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38:279–296

    Google Scholar 

  • Potapkin V, Chumakov AI, Smirnov GV, Celse J-P, Rüffer R, McCammon C, Dubrovinsky L (2012) The 57Fe synchrotron Mössbauer source at the ESRF. J Synchrotron Radiat 19:559–569

    Google Scholar 

  • Prescher C, McCammon C, Dubrovinsky L (2012) MossA: a program for analyzing energy-domain Mossbauer spectra from conventional and synchrotron sources. J Appl Crystallogr 45:329–331. https://doi.org/10.1107/S0021889812004979

    Article  Google Scholar 

  • Purwin H, Lauterbach S, Brey GP, Woodland AB, Kleebe HJ (2013) An experimental study of the Fe oxidation states in garnet and clinopyroxene as a function of temperature in the system CaO–FeO–Fe2O3–MgO–Al2O3–SiO2: implications for garnet-clinopyroxene geothermometry. Contrib Miner Petrol 165:623–639

    Google Scholar 

  • Ragozin AL, Shatsky VS, Zedgenizov DA, Mityukhin SI (2006) Evidence for evolution of diamond crystallization medium in eclogite xenolith from the Udachnaya kimberlite pipe, Yakutia. Dokl Earth Sci 407:465–468

    Google Scholar 

  • Rancourt DG, Ping JY (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nucl Instrum Methods Phys Res Sect B 58:85–97

    Google Scholar 

  • Ravna EK, Terry MP (2003) Geothermobarometry of phengite-kyanite-quartz/coesite eclogites. Paper presented at the Eleventh Annual V. M. Goldschmidt Conference, Hot Springs, Virginia, USA

  • Robinson DN (1979) Diamond and graphite in eclogite xenoliths from kimberlite. In: Boyd Hoam FR (ed) The Mantle Sample: Inclusions in Kimberlites and Other Volcanics, Proceedings of the 2nd International Kimberlite Conference, vol 1. American Geophysical Union, Washington, pp 104–126

  • Rohrbach A, Schmidt MW (2011) Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature 472:209–212

    Google Scholar 

  • Rüffer R, Chumakov AI (1996) Nuclear-resonance beamline at ESRF. Hyperfine Interact 97–98:589–604

    Google Scholar 

  • Schmickler B, Jacob DE, Foley SF (2004) Eclogite xenoliths from the Kuruman kimberlites, South Africa: geochemical fingerprinting of deep subduction and cumulate processes. Lithos 75:173–207

    Google Scholar 

  • Schrauder M, Navon O (1993) Solid carbon dioxide in a natural diamond. Nature 365:42

    Google Scholar 

  • Shirey SB et al (2013) Diamonds and the geology of mantle carbon. Carbon Earth 75:355–421. https://doi.org/10.2138/rmg.2013.75.12

    Article  Google Scholar 

  • Smart K, Cartigny P, Tappe S, Klemme S (2017) Lithospheric diamond formation as a consequence of methane-rich volatile flooding: an example from diamondiferous eclogite xenoliths of the Karelian craton (Finland). Geochim Cosmochim Ac 206:312–342

    Google Scholar 

  • Smart KA, Tappe S, Simonetti A, Simonetti SS, Woodland AB, Harris C (2017) Tectonic significance and redox state of Paleoproterozoic eclogite and pyroxenite components in the Slave cratonic mantle lithosphere, Voyageur kimberlite, Arctic Canada. Chem Geol 455:98–119

    Google Scholar 

  • Smit KV, Shirey SB, Stern RA, Steele A, Wang W (2016) Diamond growth from C–H–N–O recycled fluids in the lithosphere: Evidence from CH4 micro-inclusions and δ13C–δ15N–N content in Marange mixed-habit diamonds. Lithos 265:68–81

    Google Scholar 

  • Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343:742–746

    Google Scholar 

  • Sobolev VN, McCammon CA, Taylor LA, Snyder GA, Sobolev NV (1999) Precise Mössbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron microprobe analysis. Am Miner 84:78–85

    Google Scholar 

  • Stachel T, Luth RW (2015) Diamond formation—where, when and how? Lithos 220:200–220

    Google Scholar 

  • Stachel T, Viljoen KS, McDade P, Harris JW (2004) Diamondiferous lithospheric roots along the western margin of the Kalahari Craton—the peridotitic inclusion suite in diamonds from Orapa and Jwaneng. Contrib Miner Petrol 147:32–47

    Google Scholar 

  • Stagno V (2019) Carbon, carbides, carbonates and carbonatitic melts in the Earth’s interior. J Geol Soc 176:375–387

    Google Scholar 

  • Stagno V, Fei Y (2020) The redox boundaries of earth’s interior. Elements 16:167–172

    Google Scholar 

  • Stagno V, Frost DJ, McCammon CA, Mohseni H, Fei Y (2015) The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contrib Mineral Petr 169:16

    Google Scholar 

  • Stagno V, Ojwang DO, McCammon CA, Frost DJ (2013) The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493:84

    Google Scholar 

  • Stepanov AS, Shatsky VS, Zedgenizov DA, Ragozin AL (2008) Chemical heterogeneity in the diamondiferous eclogite xenolith from the Udachnaya Kimberlite Pipe. Dokl Earth Sci 419:308–311. https://doi.org/10.1134/S1028334x0802027x

    Article  Google Scholar 

  • Stockhert B, Duyster J, Trepmann C, Massonne HJ (2001) Microdiamond daughter crystals precipitated from supercritical COH plus silicate fluids included in garnet Erzgebirge, Germany. Geology 29:391–394. https://doi.org/10.1130/0091-7613(2001)029%3c0391:Mdcpfs%3e2.0.Co;2

    Article  Google Scholar 

  • Sverjensky DA, Stagno V, Huang F (2014) Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat Geosci 7:909–913

    Google Scholar 

  • Tappe S, Smart KA, Pearson DG, Steenfelt A, Simonetti A (2011) Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology 39:1103–1106

    Google Scholar 

  • Taylor LA, Anand M (2004) Diamonds: time capsules from the Siberian Mantle. Chemie der Erde-Geochemistry 64:1–74

    Google Scholar 

  • Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank Kimberlite, South Africa, part I: mineralogy, petrography, and whole rock chemistry. J Geol 97:551–567

    Google Scholar 

  • Thomassot E, Cartigny P, Harris JW, Viljoen KS (2007) Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet Sci Lett 257:362–371

    Google Scholar 

  • Tomilenko AA, Ragozin AL, Shatsky VS, Shebanin AP (2001) Variation in the fluid phase composition in the process of natural diamond crystallization. Dokl Earth Sci 379:571–574

    Google Scholar 

  • Viljoen F, Dobbe R, Harris J, Smit B (2010) Trace element chemistry of mineral inclusions in eclogitic diamonds from the Premier (Cullinan) and Finsch kimberlites, South Africa: implications for the evolution of their mantle source. Lithos 118:156–168

    Google Scholar 

  • Viljoen KS, Schulze DJ, Quadling AG (2005) Contrasting group I and group II eclogite xenolith petrogenesis: petrological, trace element and isotopic evidence from eclogite, garnet-websterite and alkremite xenoliths in the Kaalvallei kimberlite, South Africa. J Petrol 46:2059–2090

    Google Scholar 

  • Woodland AB, Ross CR (1994) A crystallographic and Mössbauer spectroscopy study of Fe2 +3Al2Si3O12− Fe2 +3Fe3 +2 Si3O12, (almandine-"skiagite") and Ca3Fe3 +2 Si3O12− Fe2 +3 Fe3 +2Si3O12 (andradite-"skiagite") garnet solid solutions. Phys Chem Miner 21:117–132

    Google Scholar 

  • Zedgenizov DA, Ragozin AL, Shatsky VS, Araujo D, Griffin WL, Kagi H (2009) Mg and Fe-rich carbonate–silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112:638–647

    Google Scholar 

  • Zhang C, Duan Z (2009) A model for C-O–H fluid in the Earth’s mantle. Geochimica Et Cosmochim Acta 73:2089–2102

    Google Scholar 

Download references

Acknowledgements

This study was performed within the state assignment project of IGM SB RAS, and was supported by the Russian Foundation for Basic Research, Project no. 18-35-00219, 18-05-00643A, and 18-35-20072. We acknowledge the European Synchrotron Radiation Facility for provision of beam time at ID18 Nuclear Resonance Beamline and more generally for the use of ESRF state of the art facilities. This study was partially funded through “Fondi di Ateneo 2017 and 2019” to V.S. and the Deep Carbon Observatory to G.B.A. DSM acknowledges the Chinese Academy of Sciences President’s International Fellowship Initiative (PIFI) for Postdoctoral Researchers (Grant 2019PC0033). We acknowledge thoughtful and constructive comments from D. Canil, R.W. Luth and an anonymous reviewer that improved the quality of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Mikhailenko.

Additional information

Communicated by Dante Canil.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailenko, D.S., Stagno, V., Korsakov, A.V. et al. Redox state determination of eclogite xenoliths from Udachnaya kimberlite pipe (Siberian craton), with some implications for the graphite/diamond formation. Contrib Mineral Petrol 175, 107 (2020). https://doi.org/10.1007/s00410-020-01748-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-01748-3

Keywords

Navigation