Skip to main content
Log in

Effect of microstructural variations on the failure response of a nano-enhanced polymer: a homogenization-based statistical analysis

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Statistical Volume Elements (SVEs) are employed to evaluate homogenized mesoscopic ductile failure response of a carbon nanofiber reinforced composite under uniaxial tensile and compressive loadings. In the mesoscale analysis, after virtual reconstruction of the material microstructure, 2D finite element models are generated for each SVE using a non-iterative meshing algorithm named CISAMR, which fully automates the modeling process. The ductile damage response of each SVE is then simulated to derive its homogenized stress-strain curve. Corresponding initiation, maximum, and failure turning points, together with local fiber volume fraction and homogenized bulk modulus, are defined as mesoscopic Quantities of Interest (QoIs). While compressive loadings have slightly higher strength and nearly twice higher strains at failure compared to similar tensile cases, both loadings yield similar coefficients of variance for most QoIs. Further, a stochastic bulk damage model is calibrated from mesoscopic responses, which takes bilinear and linear forms versus strain for tensile and compressive loadings, respectively. Finally, cross-correlations are made between different QoIs, showing lower strain-based QoIs and higher strengths correspond to either higher local fiber volume fractions or more fibers being aligned with the loading direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Ostoja-Starzewski M (2002) Microstructural randomness versus representative volume element in thermomechanics. J Appl Mech Trans ASME 69(1):25–35

    MATH  Google Scholar 

  2. Kanit T, Forest S, Galliet Ia, Mounoury Va, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13):3647–79

    MATH  Google Scholar 

  3. Liu WK, Siad L, Tian R, Lee S, Lee D, Yin X, Chen W, Chan S, Olson GB, Lindgen LE, Horstemeyer MF, Chang YS, Choi JB, Kim YJ (2009) Complexity science of multiscale materials via stochastic computations. Int J Numer Methods Eng 80(6–7):932–978

    MATH  Google Scholar 

  4. Sakata S, Ashida F, Zako M (2008) Kriging-based approximate stochastic homogenization analysis for composite materials. Comput Methods Appl Mech Eng 197(21–24):1953–1964

    MATH  Google Scholar 

  5. Kaminski M, Kleiber M (2000) Numerical homogenization of n-component composites including stochastic interface defects. Int J Numer Methods Eng 47(5):1001–1027

    MathSciNet  MATH  Google Scholar 

  6. Sakata S, Ashida F, Enya K (2012) A microscopic failure probability analysis of a unidirectional fiber reinforced composite material via a multiscale stochastic stress analysis for a microscopic random variation of an elastic property. Comput Mater Sci 62:35–46

    Google Scholar 

  7. Sakata S, Ashida F, Ohsumimoto K (2013) Stochastic homogenization analysis of a porous material with the perturbation method considering a microscopic geometrical random variation. Int J Mech Sci 77:145–154

    Google Scholar 

  8. Xu H, Greene MS, Deng H, Dikin D, Brinson C, Liu KW, Burkhart C, Papakonstantopoulos G, Poldneff M, Chen W (2013) Stochastic reassembly strategy for managing information complexity in heterogeneous materials analysis and design. J Mech Des 135(10):

  9. Baxter SC, Graham LL (2000) Characterization of random composites using moving-window technique. J Eng Mech 126(4):389–397

    Google Scholar 

  10. Huyse L, Maes MA (2001) Random field modeling of elastic properties using homogenization. J Eng Mech 127(1):27–36

    Google Scholar 

  11. Segurado J, Lorca JL (2006) Computational micromechanics of composites: the effect of particle spatial distribution. Mech Mater 38(8–10):873–883

    Google Scholar 

  12. Clarke PL, Abedi R, Bahmani B, Acton KA, Baxter SC (2017) Effect of the spatial inhomogeneity of fracture strength on fracture pattern for quasi-brittle materials. In: Proceedings of ASME 2017 international mechanical engineering congress & exposition IMECE 2017

  13. Acton KA, Baxter SC, Bahmani B, Clarke PL, Abedi R (2018) Voronoi tessellation based statistical volume element characterization for use in fracture modeling. Comput Methods Appl Mech Eng 336:135–155

    MathSciNet  MATH  Google Scholar 

  14. Dimas LS, Giesa T, Buehler MJ (2014) Coupled continuum and discrete analysis of random heterogeneous materials: elasticity and fracture. J Mech Phys Solids 63(1):481–490

    MathSciNet  Google Scholar 

  15. Abedi R, Haber RB, Clarke PL (2017) Effect of random defects on dynamic fracture in quasi-brittle materials. Int J Fract 208(1–2):241–268

    Google Scholar 

  16. Genet M, Couegnat G, Tomsia AP, Ritchie RO (2014) Scaling strength distributions in quasi-brittle materials from micro- to macro-scales: A computational approach to modeling nature-inspired structural ceramics. J Mech Phys Solids 68(1):93–106

    MathSciNet  Google Scholar 

  17. Al-Ostaz A, Jasiuk I (1997) Crack initiation and propagation in materials with randomly distributed holes. Eng Fract Mech 58(5–6):395–420

    Google Scholar 

  18. Kozicki J, Tejchman J (2007) Effect of aggregate structure on fracture process in concrete using 2D lattice model. Arch Mech 59(4–5):365–84

    MATH  Google Scholar 

  19. Yin X, Chen W, To A, McVeigh C, Liu WK (2008) Statistical volume element method for predicting microstructure-constitutive property relations. Comput Methods Appl Mech Eng 197(43–44):3516–3529

    MathSciNet  MATH  Google Scholar 

  20. Bazant ZP, Planas J (1997) Fracture and size effect in concrete and other quasibrittle materials, vol 16. CRC Press, Boca Raton

    Google Scholar 

  21. Greene MS, Liu Y, Chen W, Liu WK (2011) Computational uncertainty analysis in multiresolution materials via stochastic constitutive theory. Comput Methods Appl Mech Eng 200(1–4):309–325

    MathSciNet  MATH  Google Scholar 

  22. Dubey V, Mashhadian M, Abedi S, Noshadravan A (2019) Multiscale poromechanical modeling of shales incorporating microcracks. Rock Mech Rock Eng 52(12):5099–5121

    Google Scholar 

  23. Silberschmidt VV (2006) Effect of micro-randomness on macroscopic properties and fracture of laminates. J Mater Sci 41(20):6768–6776

    Google Scholar 

  24. Bheemreddy V, Chandrashekhara K, Dharani LR, Hilmas GE (2016) Computational study of micromechanical damage behavior in continuous fiber-reinforced ceramic composites. J Mater Sci 51:8610–8624

    Google Scholar 

  25. Parambil NK, Gururaja S (2016) Micromechanical damage analysis in laminated composites with randomly distributed fibers. J Compos Mater 50(21):2911–2924

    Google Scholar 

  26. Zhi J, Zhao L, Zhang J, Liu Z (2016) A numerical method for simulating the microscopic damage evolution in composites under uniaxial transverse tension. Appl Compos Mater 23(3):255–269

    Google Scholar 

  27. Yang M, Nagarajan A, Liang B, Soghrati S (2018) New algorithms for virtual reconstruction of heterogeneous microstructures. Comput Methods Appl Mech Eng 338:275–298

    MathSciNet  MATH  Google Scholar 

  28. Yang M, Ji M, Taghipour E, Soghrati S (2018) Cross-linked fiberglass packs: microstructure reconstruction and finite element analysis of the micromechanical behavior. Comput Struct 209:182–196

    Google Scholar 

  29. Soghrati S, Nagarajan A, Liang B (2017) Conforming to interface structured adaptive mesh refinement: new technique for the automated modeling of materials with complex microstructures. Finite Elem Anal Des 125:24–40

    Google Scholar 

  30. Soghrati S, Xiao F, Nagarajan A (2017) A conforming to interface structured adaptive mesh refinement technique for modeling fracture problems. Comput Mech 59(4):667–684

    MathSciNet  Google Scholar 

  31. Nagarajan A, Soghrati S (2018) Conforming to interface structured adaptive mesh refinement: 3D algorithm and implementation. Comput Mech 62(5):1213–1238

    MathSciNet  MATH  Google Scholar 

  32. Rashid YR (1968) Ultimate strength analysis of pre-stressed concrete pressure vessels. Nucl Eng Design 7(4):334–344

    Google Scholar 

  33. De Borst R (1984) Application of advanced solution techniques to concrete cracking and non-associated plasticity. Numer Methods Nonlinear Probl 2:314–325

    Google Scholar 

  34. Bažant ZP (1986) Mechanics of distributed cracking. Appl Mech Rev 39(5):675–705

    Google Scholar 

  35. Bažant ZP, Lin F-B (1988) Nonlocal smeared cracking model for concrete fracture. J Struct Eng 114(11):2493–2510

    Google Scholar 

  36. Camanho PP, Bessa MA, Catalanotti G, Vogler M, Rolfes R (2013) Modeling the inelastic deformation and fracture of polymer composites-Part II: Smeared crack model. Mech Mater 59:36–49

    Google Scholar 

  37. Pensée V, Kondo D, Dormieux L (2002) Micromechanical analysis of anisotropic damage in brittle materials. J Eng Mech 128(8):889–897

    Google Scholar 

  38. Kafka V (2004) Concrete under complex loading: mesomechanical model of deformation and of cumulative damage. Eur J Mech A/Solids 23(1):63–75

    MATH  Google Scholar 

  39. Ožbolt J, Li Y, Kožar I (2001) Microplane model for concrete with relaxed kinematic constraint. Int J Solids Struct 38(16):2683–2711

    MATH  Google Scholar 

  40. Bažant ZP, Caner FC (2005) Microplane model M5 with kinematic and static constraints for concrete fracture and an elasticity I: theory. J Eng Mech 131(1):31–40

    Google Scholar 

  41. Jefferson AD, Bennett T (2007) Micro-mechanical damage and rough crack closure in cementitious composite materials. Int J Numer Anal Methods Geomech 31(2):133–146

    MATH  Google Scholar 

  42. Bostanabad R, Liang B, Gao J, Liu WK, Cao J, Zeng D, Su X, Xu H, Li Y, Chen W (2018) Uncertainty quantification in multiscale simulation of woven fiber composites. Comput Methods Appl Mech Eng 338:506–532

    MathSciNet  MATH  Google Scholar 

  43. Hooputra H, Gese H, Dell H, Werner H (2004) A comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int J Crashworth 9(5):449–464

    Google Scholar 

  44. Sadowski T, Golewski P, Kneć M (2014) Experimental investigation and numerical modelling of spot welding-adhesive joints response. Compos Struct 112:66–77

    Google Scholar 

  45. Chen Z, Tang H, Shao Y, Sun Q, Zhou G, Li Y, Xu H, Zeng D, Su X (2019) Failure of chopped carbon fiber sheet molding compound (SMC) composites under uniaxial tensile loading: Computational prediction and experimental analysis. Compos Part A Appl Sci Manuf 118:117–130

    Google Scholar 

  46. Wu L, Nguyen V, Adam L, Noels L (2019) An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites. Comput Methods Appl Mech Eng 348:97–138

    MathSciNet  MATH  Google Scholar 

  47. Bahmani B, Yang M, Nagarajan A, Clarke PL, Soghrati S, Abedi R (2019) Automated homogenization-based fracture analysis: effects of SVE size and boundary condition. Comput Methods Appl Mech Eng 345:701–727

    MATH  Google Scholar 

  48. Acton K, Sherod C, Bahmani B, Abedi R (2019) Effect of volume element geometry on convergence to a representative volume. ASCE-ASME J Risk Uncertain Eng Syst Part B Mech Eng 5(3):030907

    Google Scholar 

  49. Garrard JM, Abedi R (2020) Statistical volume element averaging scheme for fracture of quasi-brittle materials. Comput Geotech 117:103229

    Google Scholar 

  50. Hu A, Li X, Ajdari A, Jiang B, Burkhart C, Chen W, Brinson LC (2018) Computational analysis of particle reinforced viscoelastic polymer nanocomposites—statistical study of representative volume element. J Mech Phys Solids 114:55–74

    Google Scholar 

  51. McWilliams BA, Ramesh KT, Yen CF (2013) Probabilistic response of heterogeneous particle reinforced metal matrix composites with particle size dependent strengthening. Comput Mater Sci 79:15–24

    Google Scholar 

  52. Bessa MA, Bostanabad R, Liu Z, Hu A, Apley Daniel W, Brinson C, Chen W, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty. Comput Methods Appl Mech Eng 320:633–667

    MATH  Google Scholar 

  53. Yang Z, Yabansu YC, Jha D, Liao W, Choudhary AN, Kalidindi SR, Agrawal A (2019) Establishing structure-property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches. Acta Mater 166:335–345

    Google Scholar 

  54. Ma B, Ban X, Huang H, Chen Y, Liu W, Zhi Y (2018) Deep learning-based image segmentation for al-la alloy microscopic images. Symmetry 10(4):107

    Google Scholar 

  55. Cang R, Xu Y, Chen S, Liu Y, Jiao Y, Ren MY (2017) Microstructure representation and reconstruction of heterogeneous materials via deep belief network for computational material design. J Mech Des 139(7):

  56. Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa MA (2019) Deep learning predicts path-dependent plasticity. Proc Natl Acad Sci USA 116(52):26414–26420

    Google Scholar 

  57. Shakiba M, Brandyberry DR, Zacek S, Geubelle PH (2019) Transverse failure of carbon fiber composites: analytical sensitivity to the distribution of fiber/matrix interface properties. Int J Numer Methods Eng 120(5):650–665

    MathSciNet  Google Scholar 

  58. Zhang X, O’Brien DJ, Ghosh S (2019) Parametrically homogenized continuum damage mechanics (PHCDM) models for composites from micromechanical analysis. Comput Methods Appl Mech Eng 346:456–485

    MathSciNet  MATH  Google Scholar 

  59. Sena MP, Ostoja-Starzewski M, Costa L (2013) Stiffness tensor random fields through upscaling of planar random materials. Probab Eng Mech 34:131–156

    Google Scholar 

  60. Garrard JM, Abedi R (2019) Statistical volume elements for the characterization of angle-dependent fracture strengths in anisotropic microcracked materials. J Risk Uncertain Eng Syst Part B (in press)

  61. Zhu C, Zhu P, Liu Z (2019) Uncertainty analysis of mechanical properties of plain woven carbon fiber reinforced composite via stochastic constitutive modeling. Compos Struct 207:684–700

    Google Scholar 

  62. Carmeliet J, Hens H (1994) Probabilistic nonlocal damage model for continua with random field properties. J Eng Mech 120(10):2013–2027

    Google Scholar 

  63. Carmeliet J, de Borst R (1995) Stochastic approaches for damage evolution in standard and non-standard continua. Int J Solids Struct 32(8–9):1149–1160

    MATH  Google Scholar 

  64. Bahmani B, Abedi R, Clarke PL (2019) A stochastic bulk damage model based on Mohr–Coulomb failure criterion for dynamic rock fracture. Appl Sci 9(5):830

    Google Scholar 

  65. Malyarenko A, Ostoja-Starzewski M (2019) Towards stochastic continuum damage mechanics. Int J Solids Struct 184:202–210

    MATH  Google Scholar 

  66. Taylor LM, Chen EP, Kuszmaul JS (1986) Microcrack-induced damage accumulation in brittle rock under dynamic loading. Comput Methods Appl Mech Eng 55(3):301–320

    MATH  Google Scholar 

  67. Homand-Etienne F, Hoxha D, Shao JF (1998) A continuum damage constitutive law for brittle rocks. Comput Geotech 22(2):135–151

    Google Scholar 

  68. Shao JF, Rudnicki JW (2000) A microcrack-based continuous damage model for brittle geomaterials. Mech Mater 32(10):607–619

    Google Scholar 

  69. Lu YL, Elsworth D, Wang LG (2013) Microcrack-based coupled damage and flow modeling of fracturing evolution in permeable brittle rocks. Comput Geotech 49:226–44

    Google Scholar 

  70. Nguyen VP, Stroeven M, Sluys LJ (2011) Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments. J Multisc Modell 3(04):229–270

    MathSciNet  Google Scholar 

  71. Cai ZQ, Movva S, Chiou NR, Guerra D, Hioe Y, Castro JM, Lee LJ (2010) Effect of polyaniline surface modification of carbon nanofibers on cure kinetics of epoxy resin. J Appl Polym Sci 118(4):2328–2335

    Google Scholar 

  72. Lemaitre J, Chaboche JL, Maji AK (1993) Mechanics of solid materials. J Eng Mech 119(3):642–643

    Google Scholar 

  73. Piegl L, Tiller W (2012) The NURBS book. Springer, New York

    MATH  Google Scholar 

  74. Liang B, Nagarajan A, Ahmadian H, Soghrati S (2019) Analyzing effects of surface roughness, voids, and particle-matrix interfacial bonding on the failure response of a heterogeneous adhesive. Comput Methods Appl Mech Eng 346:410–439

    MathSciNet  MATH  Google Scholar 

  75. Fiedler B, Hojo M, Ochiai S, Schulte K, Ando M (2001) Failure behavior of an epoxy matrix under different kinds of static loading. Compos Sci Technol 61(11):1615–1624

    Google Scholar 

  76. Ruzicka J, Spaniel M, Prantl A, Dzugan J, Kuzelka J, Moravec M (2012) Identification of ductile damage parameters in the ABAQUS. Bull Appl Mech 8:89–92

    Google Scholar 

  77. Hill R (1985) On the micro-to-macro transition in constitutive analyses of elastoplastic response at finite strain. Mathematical proceedings of the Cambridge philosophical society, vol 98. Cambridge University Press, Cambridge, pp 579–590

    Google Scholar 

  78. Ahmadian H, Yang M, Nagarajan A, Soghrati S (2018) Effects of shape and misalignment of fibers on the failure response of carbon fiber reinforced polymers. Comput Mech 63(5):999–1017

    MathSciNet  MATH  Google Scholar 

  79. Ren X, Chen JS, Li J, Slawson TR, Roth MJ (2011) Micro-cracks informed damage models for brittle solids. Int J Solids Struct 48(10):1560–1571

    MATH  Google Scholar 

  80. Jammalamadaka SR, Sengupta A (2001) Topics in circular statistics, vol 5. World Scientific, Singapore

    Google Scholar 

  81. Staber B, Guilleminot J (2017) Stochastic modeling and generation of random fields of elasticity tensors: a unified information-theoretic approach. Comptes Rendus Mécanique 345(6):399–416

    Google Scholar 

  82. Malyarenko A, Ostoja-Starzewski M (2018) Tensor-valued random fields for continuum physics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Acknowledgements

Soghrati and Yang acknowledge the funding from Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-17-1-0350 and the U.S. National Science Foundation (NSF) under Grant No. 1608058, as well as the allocation of computing time from the Ohio Supercomputer Center (OSC). Abedi and Garrard acknowledge partial support for this work via the U.S. NSF, CMMI - Mechanics of Materials and Structures (MoMS) program Grant No. 1538332.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Soghrati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Garrard, J., Abedi, R. et al. Effect of microstructural variations on the failure response of a nano-enhanced polymer: a homogenization-based statistical analysis. Comput Mech 67, 315–340 (2021). https://doi.org/10.1007/s00466-020-01934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01934-x

Keywords

Navigation