Skip to main content

Advertisement

Log in

Robust and Self-healable Antibiofilm Multilayer Coatings

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The infection induced by implantation of biomedical materials may result from the biofilm formation after bacteria attachment. Hence, the antibiofilm surface coating represents a novel technique to improve the antibacterial activity of biomedical materials. The traditional antibiofilm surface coatings exhibited some disadvantages and provided a limited service life. In this work, we used polyethyleneimine grafted 3-maleimidopropionic acid (PEIM) and poly(acrylic acid) grafted 2-furfurylamine (PAAF) to achieve robust and self-healable crosslinked multilayer coatings, employing Layer-by-Layer (LbL) self-assembly technique and Diels-Alder reaction. Then, thiol-terminated poly((3-acrylamidopropyl) trimethylammonium chloride) (PAMPTMA-SH) was grafted onto the crosslinked multilayer coating by thiol-ene click reaction to form a novel multilayer coating (PEIM/PAAF)10-PAMPTMA. We found that this coating showed robust and self-healable activity, and significantly inhibited the bacterial growth and biofilm formation after infection with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by in vitro and in vivo assays for 120 h. In addition, the multilayer coating did not induce significant hemolysis or affect the cell viability of red blood cells. In vivo studies also showed that (PEIM/PAAF)10-PAMPTMA coating efficiently blocked the infiltration of inflammatory cells and gene expression in the mouse skin challenged with E. coli or S. aureus. Taken together, these results showed that the prepared multilayer coating exhibited strong antibiofilm activity and provided a new strategy for the application of highly efficient antibiofilm surface coating of biomedical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ding, X. K.; Duan, S.; Ding, X. J.; Liu, R. H.; Xu, F. J. Versatile antibacterial materials: an emerging arsenal for combatting bacterial pathogens. Adv. Funct. Mater. 2018, 28, 19.

    Google Scholar 

  2. Li, C.; Lu, D. Y.; Deng, J. J.; Zhang, X.; Yang, P. Amyloid-like rapid surface modification for antifouling and in-depth remineralization of dentine tubules to treat dental hypersensitivity. Adv. Mater. 2019, 31, 1903973.

    CAS  Google Scholar 

  3. Zhao, J.; Qu, Y.; Chen, H.; Xu, R.; Yu, Q.; Yang, P. Improve wound healing in vivo. J. Mater. Chem. B 2018, 6, 4645–4655.

    CAS  PubMed  Google Scholar 

  4. Kang, T.; Banquy, X.; Heo, J.; Lim, C.; Lynd, N. A.; Lundberg, P.; Oh, D. X.; Lee, H. K.; Hong, Y. K.; Hwang, D. S.; Waite, J. H.; Israelachvili, J. N.; Hawker, C. J. Mussel-inspired anchoring of polymer loops that provide superior surface lubrication and antifouling properties. ACS Nano 2016, 10, 930–937.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Baggerman, J.; Smulders, M. M. J.; Zuilhof, H. Romantic surfaces: a systematic overview of stable, biospecific, and antifouling zwitterionic surfaces. Langmuir 2019, 35, 1072–1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, R.; Zhang, L.; Tian, N.; Ma, S.; Liu, Y.; Yu, B.; Pei, X.; Zhou, F. The tethered fibrillar hydrogels brushes for underwater antifouling. Adv. Mater. Interfaces 2017, 4, 1601039.

    Google Scholar 

  7. Hu, X.; Tian, J.; Li, C.; Su, H.; Qin, R.; Wang, Y.; Cao, X.; Yang, P. Amyloid-like protein aggregates: a new class of bioinspired materials merging an interfacial anchor with antifouling. Adv. Mater. 2020, 32, 2000128.

    CAS  Google Scholar 

  8. Yang, W.; Zhao, W.; Liu, Y.; Hu, H.; Pei, X.; Wu, Y.; Zhou, F. The effect of wetting property on anti-fouling/foul-release performance under quasi-static/hydrodynamic conditions. Prog. Org. Coat. 2016, 95, 64–71.

    CAS  Google Scholar 

  9. Borjihan, Q.; Yang, J.; Song, Q.; Gao, L.; Xu, M.; Gao, T.; Liu, W.; Li, P.; Li, Q.; Dong, A. Povidone-iodine-functionalized fluorinated copolymers with dual-functional antibacterial and antifouling activities. Biomater. Sci. 2019, 7, 3334–3347.

    CAS  PubMed  Google Scholar 

  10. Wu, J.; Yu, C.; Li, Q. Novel regenerable antimicrobial nanocomposite membranes: effect of silver loading and valence state. J. Membr. Sci. 2017, 531, 68–76.

    CAS  Google Scholar 

  11. Mitra, D.; Li, M.; Kang, E. T.; Neoh, K. G. Transparent copper-based antibacterial coatings with enhanced efficacy against Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2019, 11, 73–83.

    CAS  PubMed  Google Scholar 

  12. Xu, L. C.; Meyerhoff, M. E.; Siedlecki, C. A. Blood coagulation response and bacterial adhesion to biomimetic polyurethane biomaterials prepared with surface texturing and nitric oxide release. Acta Biomater. 2019, 84, 77–87.

    CAS  PubMed  Google Scholar 

  13. Zeng, Q.; Zhu, Y.; Yu, B.; Sun, Y.; Ding, X.; Xu, C.; Wu, Y. W.; Tang, Z.; Xu, F. J. Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromolecules 2018, 19, 2805–2811.

    CAS  PubMed  Google Scholar 

  14. Siedenbiedel, F.; Tiller, J. C. Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 2012, 4, 46–71.

    CAS  Google Scholar 

  15. Zhou, C.; Song, H.; Loh, J. L. C.; She, J.; Deng, L.; Liu, B. Grafting antibiofilm polymer hydrogel film onto catheter by SARA SI-ATRP. J. Biomater. Sci., Polym. Ed. 2018, 29, 2106–2123.

    CAS  Google Scholar 

  16. Atefyekta, S.; Pihl, M.; Lindsay, C.; Heilshorn, S. C.; Andersson, M. Antibiofilm elastin-like polypeptide coatings: functionality, stability, and selectivity. Acta Biomater. 2019, 83, 245–256.

    CAS  PubMed  Google Scholar 

  17. Gu, J.; Su, Y. J.; Liu, P.; Li, P.; Yang, P. An environmentally benign antimicrobial coating based on a protein supramolecular assembly. ACS Appl. Mater. Interfaces 2017, 9, 198–210.

    CAS  PubMed  Google Scholar 

  18. Wang, M.; Shi, J.; Mao, H.; Sun, Z.; Guo, S.; Guo, J.; Yan, F. Fluorescent imidazolium-type poly(ionic liquid)s for bacterial imaging and biofilm inhibition. Biomacromolecules 2019, 20, 3161–3170.

    CAS  PubMed  Google Scholar 

  19. Yang, W. J.; Tao, X.; Zhao, T. T.; Weng, L. X.; Kang, E. T.; Wang, L. H. Antifouling and antibacterial hydrogel coatings with self-healing properties based on a dynamic disulfide exchange reaction. Polym. Chem. 2015, 6, 7027–7035.

    CAS  Google Scholar 

  20. Wei, T.; Tang, Z.; Yu, Q.; Chen, H. Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS Appl. Mater. Interfaces 2017, 9, 37511–37523.

    CAS  PubMed  Google Scholar 

  21. Tian, J.; Liu, Y.; Miao, S.; Yang, Q.; Hu, X.; Han, Q.; Xue, L.; Yang, P. Amyloid-like protein aggregates combining antifouling with antibacterial activity. Biomater. Sci. 2020.

  22. Wang, Z. H.; Fei, G. X.; Xia, H. S.; Zuilhof, H. Dual water-healable zwitterionic polymer coatings for anti-biofouling surfaces. J. Mater. Chem. B 2018, 6, 6930–6935.

    CAS  PubMed  Google Scholar 

  23. Yuan, P.; Qiu, X.; Wang, X.; Tian, R.; Wang, L.; Bai, Y.; Liu, S.; Chen, X. Substrate-independent coating with persistent and stable antifouling and antibacterial activities to reduce bacterial infection for various implants. Adv. Healthcare Mater. 2019, 8, e1801423.

    Google Scholar 

  24. Wang, Q.; Wang, L.; Gao, L.; Yu, L.; Feng, W.; Liu, N.; Xu, M.; Li, X.; Li, P.; Huang, W. Stable and self-healable LbL coating with antibiofilm efficacy based on alkylated polyethyleneimine micelles. J. Mater. Chem. B 2019, 7, 3865–3875.

    CAS  Google Scholar 

  25. Wei, Z.; Yang, J. H.; Zhou, J.; Xu, F.; Zrínyi, M.; Dussault, P. H.; Osada, Y.; Chen, Y. M. Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 2014, 43, 8114–8131.

    CAS  PubMed  Google Scholar 

  26. Hillewaere, X. K. D.; Du Prez, F. E. Fifteen chemistries for autonomous external self-healing polymers and composites. Prog. Polym. Sci. 2015, 49–50, 121–153.

    Google Scholar 

  27. Jin, J.; Cai, L.; Jia, Y. G.; Liu, S.; Chen, Y.; Ren, L. Progress in self-healing hydrogels assembled by host-guest interactions: preparation and biomedical applications. J. Mater. Chem. B 2019, 7, 1637–1651.

    CAS  PubMed  Google Scholar 

  28. Yang, Q. M.; Liu, Y. C.; Chen, L. X.; Yang, P. Study on the amyloidlike fibrinogen-based Nanofilm. Acta Polymerica Sinica (in Chinese) 2020, 51, 890–900.

    Google Scholar 

  29. Fan, F.; Zhou, C.; Wang, X.; Szpunar, J. Layer-by-Layer assembly of a self-healing anticorrosion coating on magnesium alloys. ACS Appl. Mater. Interfaces 2015, 7, 27271–27278.

    CAS  PubMed  Google Scholar 

  30. Zhang, X.; Xu, Y.; Zhang, X.; Wu, H.; Shen, J.; Chen, R.; Xiong, Y.; Li, J.; Guo, S. Progress on the layer-by-layer assembly of multilayered polymer composites: strategy, structural control and applications. Prog. Polym. Sci. 2019, 89, 76–107.

    CAS  Google Scholar 

  31. Zhu, X. Y.; Loh, X. J. Layer-by-layer assemblies for antibacterial applications. Biomater. Sci. 2015, 3, 1505–1518.

    CAS  PubMed  Google Scholar 

  32. Wei, T.; Zhan, W. J.; Cao, L. M.; Hu, C. M.; Qu, Y. C.; Yu, Q.; Chen, H. Multifunctional and regenerable antibacterial surfaces fabricated by a universal strategy. ACS Appl. Mater. Interfaces 2016, 8, 30048–30057.

    CAS  PubMed  Google Scholar 

  33. Wang, B. L.; Ren, K. F.; Chang, H.; Wang, J. L.; Ji, J. Construction of degradable multilayer films for enhanced antibacterial properties. ACS Appl. Mater. Interfaces 2013, 5, 4136–4143.

    CAS  PubMed  Google Scholar 

  34. Zhu, X.; Guo, S.; Janczewski, D.; Velandia, F. J.; Teo, S. L.; Vancso, G. J. Multilayers of fluorinated amphiphilic polyions for marine fouling prevention. Langmuir 2014, 30, 288–296.

    CAS  PubMed  Google Scholar 

  35. Min, H.; Qian, W.; Zhao, W.; Zhao, C. S. Substrate-independent ultrathin hydrogel film as antifouling and antibacterial layer for microfiltration membrane anchored via layer-by-layer thiol-ene “click” reaction. J. Mater. Chem. B 2018, 6, 3904–3913.

    Google Scholar 

  36. Cai, T.; Li, M.; Neoh, K. G.; Kang, E. T. Preparation of stimuli responsive polycaprolactone membranes of controllable porous morphology via combined atom transfer radical polymerization, ring-opening polymerization and thiol-yne click chemistry. J. Mater. Chem. 2012, 22, 16248–16258.

    CAS  Google Scholar 

  37. Song, H. Y.; Ngai, M. H.; Song, Z. Y.; MacAry, P. A.; Hobley, J.; Lear, M. J. Practical synthesis of maleimides and coumarin-linked probes for protein and antibody labelling via reduction of native disulfides. Org. Biomol. Chem. 2009, 7, 3400–3406.

    CAS  PubMed  Google Scholar 

  38. Chen, X. C.; Ren, K. F.; Zhang, J. H.; Li, D. D.; Zhao, E.; Zhao, Z. J.; Xu, Z. K.; Ji, J. Humidity-triggered self-healing of microporous polyelectrolyte multilayer coatings for hydrophobic drug delivery. Adv. Funct. Mater. 2015, 25, 7470–7477.

    Google Scholar 

  39. Abreu, C. M. R.; Mendonça, P. V.; Serra, A. C.; Popov, A. V.; Matyjaszewski, K.; Guliashvili, T.; Coelho, J. F. J. Inorganic sulfites: efficient reducing agents and supplemental activators for atom transfer radical polymerization. ACS Macro Lett. 2012, 1, 1308–1311.

    CAS  Google Scholar 

  40. Mendonça, P. V.; Konkolewicz, D.; Averick, S. E.; Serra, A. C.; Popov, A. V.; Guliashvili, T.; Matyjaszewski, K.; Coelho, J. F. J. Synthesis of cationic poly((3-acrylamidopropyl)trimethyl-ammonium chloride) by SARA ATRP in ecofriendly solvent mixtures. Polym. Chem. 2014, 5, 5829–5836.

    Google Scholar 

  41. Chen, X. C.; Huang, W. P.; Ren, K. F.; Ji, J. Self-healing label materials based on photo-cross-linkable polymeric films with dynamic surface structures. ACS Nano 2018, 12, 8686–8696.

    CAS  PubMed  Google Scholar 

  42. Chen, D.; Wu, M.; Li, B.; Ren, K.; Cheng, Z.; Ji, J.; Li, Y.; Sun, J. Layer-by-layer-assembled healable antifouling films. Adv. Mater. 2015, 27, 5882–5888.

    CAS  PubMed  Google Scholar 

  43. Liu, Y. L.; Lee, H. C. Preparation and properties of polyhedral oligosilsequioxane tethered aromatic polyamide nanocomposites through Michael addition between maleimide-containing polyamides and an amino-functionalized polyhedral oligosilsequioxane. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4632–4643.

    CAS  Google Scholar 

  44. Asha, A. B.; Chen, Y.; Zhang, H.; Ghaemi, S.; Ishihara, K.; Liu, Y.; Narain, R. Rapid mussel-inspired surface zwitteration for enhanced antifouling and antibacterial properties. Langmuir 2018, 35, 1621–1630.

    PubMed  Google Scholar 

  45. Surman, F.; Riedel, T.; Bruns, M.; Kostina, N. Y.; Sedlakova, Z.; Rodriguez-Emmenegger, C. Polymer brushes interfacing blood as a route toward high performance blood contacting devices. Macromol. Biosci. 2015, 15, 636–646.

    CAS  PubMed  Google Scholar 

  46. Hänni-Ciunel, K.; Findenegg, G. H.; von Klitzing, R. Water contact angle on polyelectrolyte-coated surfaces: effects of film swelling and droplet evaporation. Soft Mater. 2007, 5, 61–73.

    Google Scholar 

  47. DeLongchamp, D. M.; Hammond, P. T. Highly ion conductive poly(ethylene oxide)-based solid polymer electrolytes from hydrogen bonding layer-by-layer assembly. Langmuir 2004, 20, 5403–5411.

    CAS  PubMed  Google Scholar 

  48. Li, Y. X.; Pan, T. Z.; Ma, B. H.; Liu, J. Q.; Sun, J. Q. Healable antifouling films composed of partially hydrolyzed poly(2-ethyl-2-oxazoline) and poly(acrylic acid). ACS Appl. Mater. Interfaces 2017, 9, 14429–14436.

    CAS  PubMed  Google Scholar 

  49. Bazaka, K.; Jacob, M. V.; Chrzanowski, W.; Ostrikov, K. Antibacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. RSC Adv. 2015, 5, 48739–48759.

    CAS  Google Scholar 

  50. Chin, W.; Zhong, G.; Pu, Q.; Yang, C.; Lou, W.; De Sessions, P. F.; Periaswamy, B.; Lee, A.; Liang, Z. C.; Ding, X.; Gao, S.; Chu, C. W.; Bianco, S.; Bao, C.; Tong, Y. W.; Fan, W.; Wu, M.; Hedrick, J. L.; Yang, Y. Y. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset. Nat. Commun. 2018, 9.

  51. Bauer, M.; Lautenschlaeger, C.; Kempe, K.; Tauhardt, L.; Schubert, U. S.; Fischer, D. Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol. Biosci. 2012, 12, 986–998.

    CAS  PubMed  Google Scholar 

  52. Xu, M.; Khan, A.; Wang, T.; Song, Q.; Han, C.; Wang, Q.; Gao, L.; Huang, X.; Li, P.; Huang, W. Mussel-inspired hydrogel with potent in vivo contact-active antimicrobial and wound healing promoting activities. ACS Appl. Bio. Mater. 2019, 2, 3329–3340.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Jiangsu Province (No. BK20180963) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 19KJD430001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhou.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Zhou, JT., Sheng, CJ. et al. Robust and Self-healable Antibiofilm Multilayer Coatings. Chin J Polym Sci 39, 425–440 (2021). https://doi.org/10.1007/s10118-021-2513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2513-3

Keywords

Navigation