Skip to main content
Log in

A synergism between dimethyl trisulfide and methyl thiolacetate in attracting carrion-frequenting beetles demonstrated by use of a chemically-supplemented minimal trap

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Volatile organic compounds derived from microbes recruit insects to carrion, shaping community assembly and ecological succession. The importance of individual volatiles and interactions between volatiles are difficult to assess in the field because of (1) the myriad compounds from decomposing animals and (2) the likelihood that complex volatile blends are important for the final approach to carrion. On the assumption that searching carrion-frequenting beetles may use simpler cues to orient at a distance, we employed a chemically-supplemented minimal trap that uses test chemicals associated with active decay to attract from a distance and a minimal carrion bait (a small fresh mouse carcass) to induce trap entry. Traps supplemented with both methyl thiolacetate (MeSAc) and dimethyl trisulfide (DMTS) attracted greater numbers of beetles including adult silphids (Necrophila americana and Oiceoptoma noveboracense) and the histerid Euspilotus assimilis than the combined totals of DMTS-only and MeSAc-only traps, demonstrating a synergism. The attraction of larval Necrophila americana to traps left in the field for less than 24 h suggests that larvae move between carrion sources. The use of such species for forensic applications requires caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data are available through Digital Commons (University of Connecticut) and the Open Science Framework.

Code availability

Not applicable.

References

  • Anderson RS (1982) Resource partitioning in the carrion beetle (Coleoptera: Silphidae) fauna of southern Ontario: ecological and evolutionary considerations. Canad J Zool 60:1314–1325

    Article  Google Scholar 

  • Anderson GS (2015) Human decomposition and forensics. In: Benbow M, Tomberlin J, Tarone A (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 556–575

    Google Scholar 

  • Anderson RS, Peck SB (1985) The insects and arachnids of Canada: Part 13. Canadian Government Publishing Centre, Ottawa

    Google Scholar 

  • Armstrong P, Nizio KD, Perrault KA, Forbes SL (2016) Establishing the volatile profile of pig carcasses as analogues for human decomposition during the early postmortem period. Heliyon 2:e00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bala M (2015) Beetles and forensic entomology: a comprehensive review. J Entomol Res 39:293–302

    Article  Google Scholar 

  • Battán Horenstein M, Linhares A (2011) Seasonal composition and temporal succession of necrophagous and predator beetles on pig carrion in central Argentina. Med Vet Entomol 25:395–401

    Article  PubMed  Google Scholar 

  • Borg-Karlson A, Englund FO, Unelius CR (1994) Dimethyl oligosulphides, major volatiles released from Sauromatum guttatum and Phallus impudicus. Phytochemistry 35:321–323

    Article  CAS  Google Scholar 

  • Brodie BS, Babcock T, Gries R, Benn A, Gries G (2016) Acquired smell? Mature females of the common green bottle fly shift semiochemical preferences from feces feeding sites to carrion oviposition sites. J Chem Ecol 42:40–50

    Article  CAS  PubMed  Google Scholar 

  • Byers JA (2015) Earwigs (Labidura riparia) mimic rotting-flesh odor to deceive vertebrate predators. Sci Nat 102:38

    Article  CAS  Google Scholar 

  • Cammack J, Pimsler M, Crippen T, Tomberlin J (2015) Chemical ecology of vertebrate carrion. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 187–212

    Chapter  Google Scholar 

  • Cardé, R, Charlton, R (1984) Olfactory sexual communication in Lepidoptera: Strategy, sensitivity and selectivity. In: Insect Communication, 12th Symposium of the Royal Entomological Society of London 241–265

  • Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24

    Article  CAS  PubMed  Google Scholar 

  • Charabidze D, Vincent B, Pasquerault T, Hedouin V (2016) The biology and ecology of Necrodes littoralis, a species of forensic interest in Europe. Int J Legal Med 130:273–280

    Article  PubMed  Google Scholar 

  • Chaudhury M, Zhu J, Skoda S (2017) Physical and physiological factors influence behavioral responses of Cochliomyia macellaria (Diptera: Calliphoridae) to synthetic attractants. J Econ Entomol 110:1929–1934

    Article  CAS  PubMed  Google Scholar 

  • Cosse AA, Baker TC (1996) House flies and pig manure volatiles: wind tunnel behavioral studies and electrophysiological evaluations. J Agric Entomol 13:301–317

    CAS  Google Scholar 

  • Crippen TL, Benbow ME, Pechal JL (2015) Microbial interactions during carrion decomposition. In: Benbow M, Tomberlin J, Tarone A (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 31–62

    Chapter  Google Scholar 

  • Cruise A, Watson DW, Schal C (2018) A novel passive sampling technique for collecting adult necrophilous insects arriving at neonate pig carcasses. Environ Entomol 47:1573–1581

    PubMed  Google Scholar 

  • Cruise A, Kakumanu ML, Watson DW, Schal C (2020) Effects of carrion relocation on the succession of newly arriving adult necrophilous insects. J Med Entomol 57:164–172

    Article  PubMed  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859

    Article  CAS  PubMed  Google Scholar 

  • Dekeirsschieter J, Verheggen F, Gohy M, Hubrecht F, Bourguignon L, Lognay G, Haubruge E (2009) Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int 189:46–53

    Article  CAS  PubMed  Google Scholar 

  • Dekeirsschieter J, Frederickx C, Lognay G, Brostaux Y, Verheggen FJ, Haubruge E (2013) Electrophysiological and behavioral responses of Thanatophilus sinuatus Fabricius (Coleoptera: Silphidae) to selected cadaveric volatile organic compounds. J Forensic Sci 58:917–923

    Article  CAS  PubMed  Google Scholar 

  • Fancher J, Aitkenhead-Peterson J, Farris T, Mix K, Schwab A, Wescott D, Hamilton M (2017) An evaluation of soil chemistry in human cadaver decomposition islands: potential for estimating postmortem interval (PMI). Forensic Sci Int 279:130–139

    Article  CAS  PubMed  Google Scholar 

  • Forbes SL, Carter DO (2015) Processes and mechanisms of death and decomposition of vertebrate carrion. In: Benbow M, Tomberlin J, Tarone A (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 13–30

    Chapter  Google Scholar 

  • Greene GL (1996) Rearing techniques for Creophilus maxillosus (Coleoptera: Staphylinidae), a predator of fly larvae in cattle feedlots. J Econ Entomol 89:848–851

    Article  Google Scholar 

  • Hammack L (2001) Single and blended maize volatiles as attractants for diabroticite corn rootworm beetles. J Chem Ecol 27:1373–1390

    Article  CAS  PubMed  Google Scholar 

  • Janzen DH (1977) Why fruit rots, seeds mold and meat spoils. Am Nat 111:691–713

    Article  CAS  Google Scholar 

  • Johnson S, Jürgens A (2010) Convergent evolution of carrion and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus. S Afr J Bot 76:796–807

    Article  CAS  Google Scholar 

  • Jordan HR, Tomberlin JK, Wood TK, Benbow ME (2015) Interkingdom ecological interactions of carrion decomposition. In: Benbow M, Tomberlin J, Tarone A (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 433–459

    Chapter  Google Scholar 

  • Jürgens A, Shuttleworth A (2015) Carrion and dung mimicry in plants. In: Benbow M, Tomberlin J, Tarone A (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 361–386

    Chapter  Google Scholar 

  • Kalinova B, Podskalska H, Ruzicka J, Hoskovec M (2009) Irresistible bouquet of death-how are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses. Naturwissenschaften 96:889–899

    Article  CAS  PubMed  Google Scholar 

  • Kite GC, Hetterscheid WL (2017) Phylogenetic trends in the evolution of inflorescence odours in Amorphophallus. Phytochemistry 142:126–142

    Article  CAS  PubMed  Google Scholar 

  • Landolt P, Suckling D, Judd G (2007) Positive interaction of a feeding attractant and a host kairomone for trapping the codling moth, Cydia pomonella (L.). J Chem Ecol 33:2236–2244

    Article  CAS  PubMed  Google Scholar 

  • Lutz L, Amendt J, Moreau G (2018) Carcass concealment alters assemblages and reproduction of forensically important beetles. Forensic Sci Int 291:124–132

    Article  PubMed  Google Scholar 

  • Marcin Ś (2011) Insect succession on carrion: seasonality, habitat preference and residency of histerid beetles (Coleoptera: Histeridae) visiting pig carrion exposed in various forests (Western Poland). Pol J Ecol 59:787–797

    Google Scholar 

  • Martin C, Minchilli D, Francis F, Verheggen F (2020) Behavioral and electrophysiological responses of the fringed larder beetle Dermestes frischii to the smell of a cadaver at different decomposition stages. Insects 11:238

    Article  PubMed Central  Google Scholar 

  • Meng L, Wu C, Wicklein M, Kaissling K, Bestmann H (1989) Number and sensitivity of three types of pheromone receptor cells in Antheraea pernyi and A. polyphemus. J Comp Physiol A 165:139–146

    Article  Google Scholar 

  • Merritt RW, De Jong GD (2015) Arthropod communities in terrestrial environments. In: Benbow M, Tomberlin J, Tarone A (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 65–92

    Chapter  Google Scholar 

  • Midgley JM, Richards CS, Villet MH (2009) The utility of Coleoptera in forensic investigations. In: Amendt J, Goff M, Campobasso C, Grassberger M (eds) Current concepts in forensic entomology. Springer, Dordrecht, pp 57–68

    Chapter  Google Scholar 

  • Nilssen AC, Tømmerås BÅ, Schmid R, Evensen SB (1996) Dimethyl trisulphide is a strong attractant for some calliphorids and a muscid but not for the reindeer oestrids Hypoderma tarandi and Cephenemyia trompe. Entomol Exp Appl 79:211–218

    Article  CAS  Google Scholar 

  • Ohsugi T, Nishida R, Fukami H (1985) Oviposition stimulant of Papilio xuthus, a citrus-feeding-Swallowtail butterfly. Agric Biol Chem 49:1897–1900

    CAS  Google Scholar 

  • Payne JA (1965) A summer carrion study of the baby pig Sus scrofa. Ecology 46:592–602

    Article  Google Scholar 

  • Podskalska H, Ruzicka J, Hoskovec M, Salek M (2009) Use of infochemicals to attract carrion beetles into pitfall traps. Entomol Exper Appl 132:59–64

    Article  CAS  Google Scholar 

  • Ratcliffe BC (1996) The carrion beetles (Coleoptera: Silphidae) of Nebraska. University of Nebraska State Museum, Lincoln

    Google Scholar 

  • Recinos-Aguilar YM, García-García MD, Malo EA, Cruz-López L, Rojas JC (2019) The colonization of necrophagous larvae accelerates the decomposition of chicken carcass and the emission of volatile attractants for blowflies (Diptera: Calliphoridae). J Med Entomol 56:1590–1597

    Article  CAS  PubMed  Google Scholar 

  • Reed HBJ (1958) A study of dog carcass communities in Tennessee with special reference to the insects. Am Midl Nat 59:213–245

    Article  Google Scholar 

  • Riffell JA, Shlizerman E, Sanders E, Abrell L, Medina B, Hinterwirth AJ, Kutz JN (2014) Flower discrimination by pollinators in a dynamic chemical environment. Science 344:1515–1518

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute Inc (2007) JMP statistics and graphics guide v. 7. SAS Institute, Inc., Cary

    Google Scholar 

  • Savarie PJ, Clark L (2006) Evaluation of bait matrices and chemical lure attractants for brown tree snakes. In: Proceedings of the 22nd Vertebrate Pest Conference, pp 483–488

  • Schlyter F, Loqvist J, Byers J (1987) Behavioural sequence in the attraction of the bark beetle Ips typographus to pheromone sources. Physiol Entomol 12:185–196

    Article  CAS  Google Scholar 

  • Shirasu M, Fujioka K, Kakishima S, Nagai S, Tomizawa Y, Tsukaya H, Murata J, Manome Y, Touhara K (2010) Chemical identity of a rotting animal-like odor emitted from the inflorescence of the titan arum (Amorphophallus titanum). Biosci Biotechnol Biochem 74:2550–2554

    Article  CAS  PubMed  Google Scholar 

  • Shivik JA, Clark L (1999) The development of chemosensory attractants for brown tree snakes. In: Johnston RE, Müller-Schwarze D, Sorensen PW (eds) Advances in chemical signals in vertebrates. Springer, Boston, pp 649–654

    Chapter  Google Scholar 

  • Silbering AF, Galizia CG (2007) Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. J Neurosci 27:11966–11977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strickland MS, Wickings K (2015) Carrion effects on belowground communities and consequences for soil processes. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 93–106

    Chapter  Google Scholar 

  • Summerlin J, Fincher G, Meola S (1989) Laboratory observations on the life cycle of Euspilotus assimillis (Coleoptera: Histeridae). J Entomol Sci 24:496–499

    Article  Google Scholar 

  • Tabor KL, Fell RD, Brewster CC (2005) Insect fauna visiting carrion in Southwest Virginia. Forensic Sci Int 150:73–80

    Article  PubMed  Google Scholar 

  • Trumbo ST (1990) Reproductive success, phenology, and biogeography of burying beetles (Silphidae, Nicrophorus). Am Midl Nat 124:1–11

    Article  Google Scholar 

  • Trumbo ST, Steiger S (2020) Finding a fresh carcass: bacterially-derived volatiles and burying beetle search success. Chemoecology. https://doi.org/10.1101/2020.01.25.919696 ((in press))

    Article  Google Scholar 

  • Trumbo ST, Philbrick PKB, Stökl J, Steiger S (2020) Burying beetles adaptively manipulate information broadcast from a microbial community. Am Nat (in press)

  • Tyc O, Zweers H, de Boer W, Garbeva P (2015) Volatiles in inter-specific bacterial interactions. Front Microbiol 6:1412

    Article  PubMed  PubMed Central  Google Scholar 

  • Verheggen F, Perrault KA, Megido RC, Dubois LM, Francis F, Haubruge E, Forbes SL, Focant J, Stefanuto P (2017) The odor of death: an overview of current knowledge on characterization and applications. Bioscience 67:600–613

    Article  Google Scholar 

  • Verschut TA, Carlsson MA, Hambäck PA (2019) Scaling the interactive effects of attractive and repellent odours for insect search behaviour. Sci Rep 9:1–8

    Article  CAS  Google Scholar 

  • von Hoermann C, Ruther J, Ayasse M (2012) The attraction of virgin female hide beetles (Dermestes maculatus) to cadavers by a combination of decomposition odour and male sex pheromones. Front Zool 9:18

    Article  CAS  Google Scholar 

  • von Hoermann C, Steiger S, Müller JK, Ayasse M (2013) Too fresh is unattractive! The attraction of newly emerged Nicrophorus vespilloides females to odour bouquets of large cadavers at various stages of decomposition. PLoS ONE 8:e58524

    Article  CAS  Google Scholar 

  • von Hoermann C, Ruther J, Ayasse M (2016) Volatile organic compounds of decaying piglet cadavers perceived by Nicrophorus vespilloides. J Chem Ecol 42:756–767

    Article  CAS  Google Scholar 

  • Watson E, Carlton C (2005) Succession of forensically significant carrion beetle larvae on large carcasses (Coleoptera: Silphidae). Southeast Nat 4:335–347

    Article  Google Scholar 

  • Webster B, Cardé RT (2017) Use of habitat odour by host-seeking insects. Biol Rev 92:1241–1249

    Article  PubMed  Google Scholar 

  • Wee SL, Tan SB, Jürgens A (2018) Pollinator specialization in the enigmatic Rafflesia cantleyi: a true carrion flower with species-specific and sex-biased blow fly pollinators. Phytochemistry 153:120–128

    Article  CAS  PubMed  Google Scholar 

  • Wilson DS, Knollenberg WG, Fudge J (1984) Species packing and temperature dependent competition among burying beetles (Silphidae, Nicrophorus). Ecol Entomol 9:205–216

    Article  Google Scholar 

  • Wilson JK, Kessler A, Woods HA (2015) Noisy communication via airborne infochemicals. Bioscience 40:1–11

    Article  Google Scholar 

  • Yan G, Liu S, Schlink AC, Flematti GR, Brodie BS, Bohman B, Greeff JC, Vercoe PE, Hu J, Martin GB (2018) Behavior and electrophysiological response of gravid and non-gravid Lucilia cuprina (Diptera: Calliphoridae) to carrion-associated compounds. J Econ Entomol 111:1958–1965

    Article  CAS  PubMed  Google Scholar 

  • Yoho KC (2019) Necrophilous insect attraction to cadaveric volatile organic compounds. M.Sc. thesis, Purdue University, West Lafayette

  • Zito P, Sajeva M, Raspi A, Dötterl S (2014) Dimethyl disulfide and dimethyl trisulfide: so similar yet so different in evoking biological responses in saprophilous flies. Chemoecology 24:261–267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alfred Newton (staphylinids), Armin Moczek and Anna Macagno (scarabs) for their assistance with insect identification. Sandra Steiger kindly reviewed the manuscript. The Southern Connecticut Regional Water Authority and the Flanders Preserve granted permission for field experiments. The research was supported by the University of Connecticut Research Foundation.

Funding

This work was supported by the University of Connecticut Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

ST and JD carried out the research and analyzed the data. ST planned and designed the research and wrote the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Stephen T. Trumbo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

This research is covered under IACUC-2 guidelines (E16-006) administered by The University of Connecticut (#A3124-01).

Consent to participate

Not applicable.

Consent for publication

The authors consent to publication.

Additional information

Communicated by Günther Raspotnig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trumbo, S.T., Dicapua, J.A. A synergism between dimethyl trisulfide and methyl thiolacetate in attracting carrion-frequenting beetles demonstrated by use of a chemically-supplemented minimal trap. Chemoecology 31, 79–87 (2021). https://doi.org/10.1007/s00049-020-00330-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-020-00330-4

Keywords

Navigation