Skip to main content
Log in

Effects of hemicellulose composition and content on the interaction between cellulose nanofibers

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, cellulose nanofibers (CNFs) from softwood and hardwood kraft pulps were prepared with different hemicellulose contents, and the effects of the hemicellulose compositions and contents on the interaction between CNFs were studied. In addition, the effects of CNF interaction on the CNF dispersion stability and viscosity characteristics in the aqueous state were investigated. Using quartz crystal microbalance with dissipation, the results of the interaction analysis revealed that hemicellulose moderated the strength of the interaction between CNFs, and the intensity of the interaction changed according to the hemicellulose compositions. The interaction between galactoglucomannans was stronger than that between glucuronoxylans, and CNFs prepared from softwood pulp containing mainly galactoglucomannan showed stronger interaction between CNFs than those prepared from hardwood pulp containing mainly glucuronoxylan. The presence of hemicelluloses on the surface of CNFs improved the dispersion stability and increased the viscosity. However, the intensity of the interaction between CNFs, which is dependent on the type of hemicellulose, did not affect these properties. The properties of CNFs in the aqueous state are determined by not only the interaction between CNFs but also several factors such as the morphology of CNFs and physical properties of hemicelluloses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The data during and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  • Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromol 9:1273–1283

    Article  CAS  Google Scholar 

  • Arola S, Malho JM, Laaksonen P, Lillea M, Linde MB (2013) The role of hemicellulose in nanofibrillated cellulose networks. Soft Matter 9:1319–1326

    Article  CAS  Google Scholar 

  • Eronen P, Österberg M, Heikkinen S, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohyd Polym 86:1281–1290

    Article  CAS  Google Scholar 

  • Grüneberger F, Künniger T, Zimmermann T, Arnold M (2014) Rheology of nanofibrillated cellulose/acrylate systems for coating applications. Cellulose 21:1313–1326

    Article  Google Scholar 

  • Höök F, Rodahl M, Brzezinski P, Kasemo B (1998) Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance. Langmuir 14:729–734

    Article  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  • Iwamoto S, Endo T (2015) 3 nm thick lignocellulose nanofibers obtained from esterified wood with maleic anhydride. ACS Macro Lett 4:80–83

    Article  CAS  Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromol 9:1022–1026

    Article  CAS  Google Scholar 

  • Iwamoto S, Lee SH, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46:73–76

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Kulasinski K, Guyer R, Derome D, Carmelie J (2015) Water adsorption in wood microfibril-hemicellulose system: role of the crystalline–amorphous interface. Biomacromol 16:2972–2978

    Article  CAS  Google Scholar 

  • Kumagai A, Endo T (2018) Comparison of the surface constitutions of hemicelluloses on lignocellulosic nanofibers prepared from softwood and hardwood. Cellulose 25:3885–3897

    Article  CAS  Google Scholar 

  • Kumagai A, Lee SH, Endo T (2013) Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study. Biomacromol 14:2420–2426

    Article  CAS  Google Scholar 

  • Kumagai A, Endo T, Adachi M (2019) Evaluation of cellulose nanofibers by using sedimentation method. Jpn Tappi J 73:461–469

    Article  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433

    Article  CAS  Google Scholar 

  • Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustainable Chem Eng 3:821–832

    Article  CAS  Google Scholar 

  • Mendoza L, Gunawardhana T, Batchelor W, Garnier G (2018) Effects of fibre dimension and charge density on nanocellulose gels. J Colloid Interface Sci 525:119–125

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Pignon F (2016) Current progress in rheology of cellulose nanofibril suspensions. Biomacromol 17:2311–2320

    Article  CAS  Google Scholar 

  • Noguchi Y, Homma I, Matsubara Y (2017) Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 24:1295–1305

    Article  CAS  Google Scholar 

  • Olejnik A, Schoreder G, Nowak I (2015) The tetrapeptide N-acetyl-Pro-Pro-Tyr-Leu in skin care formulations—physicochemical and release studies. Int J Pharm 492:161–168

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941

    Article  Google Scholar 

  • Pennells J, Godwin ID, Amiralian N, Martin DJ (2020) Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 27:575–593

    Article  CAS  Google Scholar 

  • Penttilä PA, Várnai A, Pere J, Tammelin T, Salmén L, Siika-aho M, Viikari L, Serimaa R (2013) Xylan as limiting factor in enzymatic hydrolysis of nanocellulose. Bioresour Technol 129:135–141

    Article  Google Scholar 

  • Reviakine I, Johannsmann D, Richter RP (2011) Hearing what you cannot see and visualizing what you hear: interpreting quartz crystal microbalance data from solvated interfaces. Anal Chem 83:8838–8848

    Article  CAS  Google Scholar 

  • Rodahl M, Höök F, Krozer A, Brzezinski P, Kasemo B (1995) Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum 66:3924–3930

    Article  CAS  Google Scholar 

  • Salmén L, Olsson AM (1998) Interaction between hemicelluloses, lignin and cellulose: structure-property relationships. J Pulp Pap Sci 24:99–103

    Google Scholar 

  • Sauerbrey G (1959) The use of quartz oscillators for weighing thin layers and for microweighing. Z Phys 155:206–222

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Solala I, Iglesias MC, Peresin MS (2020) On the potential of lignin-containing cellulose nanofibrils (LCNFs): a review on properties and applications. Cellulose 27:1853–1877

    Article  CAS  Google Scholar 

  • Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219

    Article  CAS  Google Scholar 

  • Tammelin T, Saarinen T, Österberg M, Laine J (2006) Preparation of Langmuir/Blodgett-cellulose surfaces by using horizontal dipping procedure. Application for polyelectrolyte adsorption studies performed with QCM-D. Cellulose 13:519–535

    Article  CAS  Google Scholar 

  • Tammelin T, Paananen A, Österberg M (2009) Hemicelluloses at interfaces: some aspects of the interactions. In: Lucian LA, Rojas OJ (eds) The nanoscience and technology of renewable biomaterials. Wiley, Chichester, pp 149–172

    Chapter  Google Scholar 

  • Tenhunen TM, Peresin MS, Penttilä PA, Pere J, Serimaa R, Tammelin T (2014) Significance of xylan on the stability and water interactions of cellulosic nanofibrils. React Func Polym 85:157–166

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9:65–74

    Article  CAS  Google Scholar 

  • Voinova M, Rodahl M, Jonson M, Kasemo B (1999) Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys Scr 59:391–396

    Article  CAS  Google Scholar 

  • Yadong Z, Moser C, Lindström ME, Henriksson G, Li J (2017) Cellulose nanofibers from softwood, hardwood, and tunicate: preparation–structure–film performance interrelation. ACS Appl Mater Interfaces 9:13508–13519

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Kumagai.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumagai, A., Endo, T. Effects of hemicellulose composition and content on the interaction between cellulose nanofibers. Cellulose 28, 259–271 (2021). https://doi.org/10.1007/s10570-020-03530-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03530-x

Keywords

Navigation