Skip to main content
Log in

CREPT serves as a biomarker of poor survival in pancreatic ductal adenocarcinoma

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive human malignancies. Cell-cycle-related and expression-elevated protein in tumor (CREPT) plays an important role in the phosphorylation of RNA Pol II, and has been implicated in the development of several types of cancer. As yet, however, there have been no reports on its role in PDAC. Here, we aimed to explore the value of CREPT as a prognostic biomarker in PDAC.

Methods

CREPT expression was assessed by immunohistochemistry (IHC) on a tissue microarray containing samples from 375 PDAC patients. Kaplan-Meier and Cox regression analyses were performed to explore the independent prognostic value of CREPT expression for the disease-free survival (DFS) and overall survival (OS) of PDAC patients. A Cell Counting Kit-8 (CCK8) assay was used to determine the growth rates and gemcitabine sensitivities of PDAC cells, while a Transwell assay was used to determine the migration and invasion abilities of PDAC cells. Subcutaneous xenografts were used to explore the effect of CREPT expression on tumor growth in vivo.

Results

We found that CREPT is highly expressed in tumor tissues and may serve as an independent prognostic biomarker for DFS and OS of PDAC patients. In vitro assays revealed that CREPT expression promotes the proliferation, migration, invasion and gemcitabine resistance of PDAC cells, and in vivo assays showed that CREPT expression knockdown led to inhibition of PDAC tumor growth.

Conclusions

We conclude that high CREPT expression enhances the proliferation, migration, invasion and gemcitabine resistance of PDAC cells. In addition, we conclude that CREPT may serve as an independent prognostic biomarker and therapeutic target for PDAC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCK8:

Cell Counting Kit-8

CES:

composite expression score

CI:

confidence interval

CREPT:

cell-cycle-related and expression-elevated protein in tumor

CTD:

C-terminal domain

DFS:

disease-free survival

HE:

Hematoxylin-eosin

IHC:

immunohistochemistry

OS:

overall survival

PDAC:

pancreatic ductal adenocarcinoma

RPRD1B:

regulation of the nuclear precursor RNA domain containing 1B

SDS-PAGE:

SDS-polyacrylamide gel electrophoresis

TMA:

tissue microarray

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J Clin 69, 7–34 (2019)

    Google Scholar 

  2. M. Hidalgo, Pancreatic cancer. N Engl J Med 362, 1605–1617 (2010)

    CAS  PubMed  Google Scholar 

  3. S. Maeda, M. Unno, J. Yu, Adjuvant and neoadjuvant therapy for pancreatic cancer. J Pancreatol 2, 100–106 (2019)

    Google Scholar 

  4. D. Li, K. Xie, R. Wolff, J.L. Abbruzzese, Pancreatic cancer. Lancet 363, 1049–1057 (2004)

  5. A. Fesler, J. Ju, Development of microRNA-based therapy for pancreatic cancer. J Pancreatol 2, 147–151 (2019)

    PubMed  PubMed Central  Google Scholar 

  6. M.A. Tempero, M.P. Malafa, M. Al-Hawary, H. Asbun, A. Bain, S.W. Behrman, A.B. Benson 3rd, E. Binder, D.B. Cardin, C. Cha, E.G. Chiorean, V. Chung, B. Czito, M. Dillhoff, E. Dotan, C.R. Ferrone, J. Hardacre, W.G. Hawkins, J. Herman, A.H. Ko, S. Komanduri, A. Koong, N. LoConte, A.M. Lowy, C. Moravek, E.K. Nakakura, E.M. O'Reilly, J. Obando, S. Reddy, C. Scaife, S. Thayer, C.D. Weekes, R.A. Wolff, B.M. Wolpin, J. Burns, S. Darlow, Pancreatic adenocarcinoma, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 15, 1028–1061 (2017)

    PubMed  Google Scholar 

  7. G. Ohshio, T. Manabe, Y. Watanabe, K. Endo, H. Kudo, T. Suzuki, T. Tobe, Comparative studies of DU-PAN-2, carcinoembryonic antigen, and CA19-9 in the serum and bile of patients with pancreatic and biliary tract diseases: Evaluation of the influence of obstructive jaundice. Am J Gastroenterol 85, 1370–1376 (1990)

    CAS  PubMed  Google Scholar 

  8. N. Duraker, S. Hot, Y. Polat, A. Höbek, N. Gençler, N. Urhan, CEA, CA 19-9, and CA 125 in the differential diagnosis of benign and malignant pancreatic diseases with or without jaundice. J Surg Oncol 95, 142–147 (2007)

    CAS  PubMed  Google Scholar 

  9. D. Lu, Y. Wu, Y. Wang, F. Ren, D. Wang, F. Su, Y. Zhang, X. Yang, G. Jin, X. Hao, D. He, Y. Zhai, D.M. Irwin, J. Hu, J.J. Sung, J. Yu, B. Jia, Z. Chang, CREPT accelerates tumorigenesis by regulating the transcription of cell-cycle-related genes. Cancer Cell 21, 92–104 (2012)

    CAS  PubMed  Google Scholar 

  10. G. Pineda, Z. Shen, C.P. de Albuquerque, E. Reynoso, J. Chen, C.C. Tu, W. Tang, S. Briggs, H. Zhou, J.Y. Wang, Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain. BMC Res Notes 8, 616 (2015)

    PubMed  PubMed Central  Google Scholar 

  11. S. Egloff, M. Dienstbier, S. Murphy, Updating the RNA polymerase CTD code: Adding gene-specific layers. Trends Genet 28, 333–341 (2012)

    CAS  PubMed  Google Scholar 

  12. R.J. Sims 3rd, L.A. Rojas, D.B. Beck, R. Bonasio, R. Schuller, W.J. Drury 3rd, D. Eick, D. Reinberg, The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science 332, 99–103 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Z. Ni, J.B. Olsen, X. Guo, G. Zhong, E.D. Ruan, E. Marcon, P. Young, H. Guo, J. Li, J. Moffat, A. Emili, J.F. Greenblatt, Control of the RNA polymerase II phosphorylation state in promoter regions by CTD interaction domain-containing proteins RPRD1A and RPRD1B. Transcription 2, 237–242 (2011)

    PubMed  PubMed Central  Google Scholar 

  14. Y. Wang, H. Qiu, W. Hu, S. Li, J. Yu, RPRD1B promotes tumor growth by accelerating the cell cycle in endometrial cancer. Oncol Rep 31, 1389–1395 (2014)

    CAS  PubMed  Google Scholar 

  15. Y. She, J. Liang, L. Chen, Y. Qiu, N. Liu, X. Zhao, X. Huang, Y. Wang, F. Ren, Z. Chang, P. Li, CREPT expression correlates with poor prognosis in patients with retroperitoneal leiomyosarcoma. Int J Clin Exp Pathol 7, 6596–6605 (2014)

    PubMed  PubMed Central  Google Scholar 

  16. G. Yang, G. Xiong, M. Feng, F. Zhao, J. Qiu, Y. Liu, Z. Cao, H. Wang, J. Yang, L. You, L. Zheng, T. Zhang, Y. Zhao, OLR1 promotes pancreatic Cancer metastasis via increased c-Myc expression and transcription of HMGA2. Mol Cancer Res 18, 685–697 (2020)

    CAS  PubMed  Google Scholar 

  17. C. Osborne, P. Wilson, D. Tripathy, Oncogenes and tumor suppressor genes in breast cancer: Potential diagnostic and therapeutic applications. Oncologist 9, 361–377 (2004)

    CAS  PubMed  Google Scholar 

  18. J. Liu, H. Liu, X. Zhang, P. Gao, J. Wang, Z. Hu, Identification and characterization of P15RS, a novel P15(INK4b) related gene on G1/S progression. Biochem Biophys Res Commun 299, 880–885 (2002)

    CAS  PubMed  Google Scholar 

  19. P. Komarnitsky, E.J. Cho, S. Buratowski, Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14, 2452–2460 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. B.N. Devaiah, B.A. Lewis, N. Cherman, M.C. Hewitt, B.K. Albrecht, P.G. Robey, K. Ozato, R.J. Sims 3rd, D.S. Singer, BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci U S A 109, 6927–6932 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. B. Bartkowiak, P. Liu, H.P. Phatnani, N.J. Fuda, J.J. Cooper, D.H. Price, K. Adelman, J.T. Lis, A.L. Greenleaf, CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev 24, 2303–2316 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. S. Buratowski, Progression through the RNA polymerase II CTD cycle. Mol Cell 36, 541–546 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. B.M. Peterlin, D.H. Price, Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23, 297–305 (2006)

    CAS  PubMed  Google Scholar 

  24. A.L. Mosley, S.G. Pattenden, M. Carey, S. Venkatesh, J.M. Gilmore, L. Florens, J.L. Workman, M.P. Washburn, Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol Cell 34, 168–178 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Egloff, J. Zaborowska, C. Laitem, T. Kiss, S. Murphy, Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol Cell 45, 111–122 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. A.R. Bataille, C. Jeronimo, P.E. Jacques, L. Laramee, M.E. Fortin, A. Forest, M. Bergeron, S.D. Hanes, F. Robert, A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol Cell 45, 158–170 (2012)

    CAS  PubMed  Google Scholar 

  27. S. Hausmann, H. Koiwa, S. Krishnamurthy, M. Hampsey, S. Shuman, Different strategies for carboxyl-terminal domain (CTD) recognition by serine 5-specific CTD phosphatases. J Biol Chem 280, 37681–37688 (2005)

    CAS  PubMed  Google Scholar 

  28. S. Krishnamurthy, X. He, M. Reyes-Reyes, C. Moore, M. Hampsey, Ssu72 is an RNA polymerase II CTD phosphatase. Mol Cell 14, 387–394 (2004)

    CAS  PubMed  Google Scholar 

  29. S. Egloff, S. Murphy, Cracking the RNA polymerase II CTD code. Trends Genet 24, 280–288 (2008)

    CAS  PubMed  Google Scholar 

  30. W. Kong, K. Engel, J. Wang, Mammalian nucleoside transporters. Curr Drug Metab 5, 63–84 (2004)

    CAS  PubMed  Google Scholar 

  31. J.P. Hsin, A. Sheth, J.L. Manley, RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′ end processing. Science 334, 683–686 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. A. Mayer, M. Heidemann, M. Lidschreiber, A. Schreieck, M. Sun, C. Hintermair, E. Kremmer, D. Eick, P. Cramer, CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336, 1723–1725 (2012)

    CAS  PubMed  Google Scholar 

  33. B.M. Lunde, S.L. Reichow, M. Kim, H. Suh, T.C. Leeper, F. Yang, H. Mutschler, S. Buratowski, A. Meinhart, G. Varani, Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat Struct Mol Biol 17, 1195–1201 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. K. Mei, Z. Jin, F. Ren, Y. Wang, Z. Chang, X. Wang, Structural basis for the recognition of RNA polymerase II C-terminal domain by CREPT and p15RS. Sci China Life Sci 57, 97–106 (2014)

    CAS  PubMed  Google Scholar 

  35. Y. Wu, Y. Zhang, H. Zhang, X. Yang, Y. Wang, F. Ren, H. Liu, Y. Zhai, B. Jia, J. Yu, Z. Chang, p15RS attenuates Wnt/{beta}-catenin signaling by disrupting {beta}-catenin.TCF4 interaction. J Biol Chem 285, 34621–34631 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. E.A. Klein, R.K. Assoian, Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci 121, 3853–3857 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. M. Shtutman, J. Zhurinsky, I. Simcha, C. Albanese, M. D'Amico, R. Pestell, A. Ben-Ze'ev, The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96, 5522–5527 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. I. Matsumura, T. Kitamura, H. Wakao, H. Tanaka, K. Hashimoto, C. Albanese, J. Downward, R.G. Pestell, Y. Kanakura, Transcriptional regulation of the cyclin D1 promoter by STAT5: Its involvement in cytokine-dependent growth of hematopoietic cells. EMBO J 18, 1367–1377 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. D.C. Guttridge, C. Albanese, J.Y. Reuther, R.G. Pestell, A.S. Baldwin Jr., NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19, 5785–5799 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. R.A. Cavallo, R.T. Cox, M.M. Moline, J. Roose, G.A. Polevoy, H. Clevers, M. Peifer, A. Bejsovec, Drosophila Tcf and Groucho interact to repress wingless signalling activity. Nature 395, 604–608 (1998)

    CAS  PubMed  Google Scholar 

  41. H. Clevers, R. Nusse, Wnt/beta-catenin signaling and disease. Cell 149, 1192–1205 (2012)

    CAS  PubMed  Google Scholar 

  42. J.N. Anastas, R.T. Moon, WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13, 11–26 (2013)

    CAS  PubMed  Google Scholar 

  43. D. Ma, Y. Zou, Y. Chu, Z. Liu, G. Liu, J. Chu, M. Li, J. Wang, S.Y. Sun, Z. Chang, A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer. Theranostics 10, 3708–3721 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. C.R. Ferrone, M.W. Kattan, J.S. Tomlinson, S.P. Thayer, M.F. Brennan, A.L. Warshaw, Validation of a postresection pancreatic adenocarcinoma nomogram for disease-specific survival. J Clin Oncol 23, 7529–7535 (2005)

    PubMed  PubMed Central  Google Scholar 

  45. Z. Zheng, M. Wang, C. Tan, Y. Chen, J. Ping, R. Wang, X. Liu, Disparities in survival by stage after surgery between pancreatic head and body/tail in patients with nonmetastatic pancreatic cancer. PLoS One 14, e0226726 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. L.K. Winer, V.K. Dhar, K. Wima, M.C. Morris, T.C. Lee, S.A. Shah, S.A. Ahmad, S.H. Patel, The impact of tumor location on resection and survival for pancreatic ductal adenocarcinoma. J Surg Res 239, 60–66 (2019)

    PubMed  Google Scholar 

  47. Q. Ling, X. Xu, P. Ye, H. Xie, F. Gao, Q. Hu, Z. Liu, X. Wei, C. Roder, A. Trauzold, H. Kalthoff, S. Zheng, The prognostic relevance of primary tumor location in patients undergoing resection for pancreatic ductal adenocarcinoma. Oncotarget 8, 15159–15167 (2017)

    PubMed  PubMed Central  Google Scholar 

  48. M.K. Lau, J.A. Davila, Y.H. Shaib, Incidence and survival of pancreatic head and body and tail cancers: A population-based study in the United States. Pancreas 39, 458–462 (2010)

    PubMed  Google Scholar 

  49. I. Watanabe, S. Sasaki, M. Konishi, T. Nakagohri, K. Inoue, T. Oda, T. Kinoshita, Onset symptoms and tumor locations as prognostic factors of pancreatic cancer. Pancreas 28, 160–165 (2004)

    PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 81772639, No. 81802475, No. 81972258, No. 81974376), the Natural Science Foundation of Beijing (No. 7192157), the CAMS Innovation Fund for Medical Sciences (CIFMS) (No.2016-I2M-1-001) and the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2018PT32014).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing and editing of this manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Taiping Zhang or Yupei Zhao.

Ethics declarations

Ethics approval and consent to participate

This research was approved by the Research Medical Ethics Committee of Peking Union Medical College Hospital. Informed consent was obtained from each patient.

Consent for publication

All authors agreed to publish the article.

Competing interests

The authors declare no potential conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 133 kb)

ESM 2

(DOC 63 kb)

ESM 3

(DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Wang, Y., Xiao, J. et al. CREPT serves as a biomarker of poor survival in pancreatic ductal adenocarcinoma. Cell Oncol. 44, 345–355 (2021). https://doi.org/10.1007/s13402-020-00569-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00569-7

Keywords

Navigation