Skip to main content
Log in

Selective Synthesis of Cyclohexanol Intermediates from Lignin-Based Phenolics and Diaryl Ethers using Hydrogen over Supported Metal Catalysts: A Critical Review

  • Review Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

A Correction to this article was published on 24 November 2020

This article has been updated

Abstract

Depolymerisation of lignin produces concoction of aromatic compounds, such as, phenols, dihydroxybenzenes, alkylphenols, methoxyphenols, alkyl-methoxy substituted phenols, and diaryl ethers. This review presents an introduction on lignin, phenolic compounds and its value-added products, namely, cyclohexanols, cyclohexanones, and cyclohexanes obtained via hydrodeoxygenation/-hydrogenation reaction. The prior-art of catalytic interventions for selective preparation of cyclohexanols (a potential polymer and fuel intermediates) from lignin-based phenolic compounds are discussed. For this process, in-depth evaluation of nature of catalytic support, effect of reaction conditions (temperature and H2 pressure)/medium, active metallic sites, and mechanistic paths are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Fig. 5
Fig. 6
Scheme 3
Scheme 4

Similar content being viewed by others

Change history

  • 24 November 2020

    The authors make the following corrections in the paper:

References

  1. Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493–1513

    CAS  Google Scholar 

  2. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) Bioresour Technol 101:8915–8922

    CAS  PubMed  Google Scholar 

  3. Scarlat N, Dallemand J-F, Monforti-Ferrario F, Nita V (2015) Environ Dev 15:3–34

    Google Scholar 

  4. Gundekari S, Srinivasan K (2019) ChemCatChem 11:1102–1111

    CAS  Google Scholar 

  5. Ahmad E, Pant KK (2018). In: Bhaskar T, Pandey A, Mohan SV, Lee D-J, Khanal SK (eds) Waste biorefinery. Elsevier, Amsterdam, pp 409–444

    Google Scholar 

  6. Strassberger Z, Tanase S, Rothenberg G (2014) RSC Adv 4:25310–25318

    CAS  Google Scholar 

  7. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Science 344:1246843

    PubMed  Google Scholar 

  8. Langholtz M, Downing M, Graham R, Baker F, Compere A, Griffith W, Boeman R, Keller M (2014) SAE Int J Mater Manuf 7:115–121

    Google Scholar 

  9. Lee HV, Hamid SB, Zain SK (2014) Sci World J 2014:631013

    CAS  Google Scholar 

  10. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Chem Rev 115:11559–11624

    CAS  PubMed  Google Scholar 

  11. Chio C, Sain M, Qin W (2019) Renew Sustain Energy Rev 107:232–249

    CAS  Google Scholar 

  12. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552–3599

    CAS  PubMed  Google Scholar 

  13. Prakash A, Singh R, Balagurumurthy B, Bhaskar T, Arora AK, Puri SK (2015). In: Pandey A, Bhaskar T, Stöcker M, Sukumaran RK (eds) Recent advances in thermo-chemical conversion of biomass. Elsevier, Boston, pp 455–478

    Google Scholar 

  14. Santos RB, Hart P, Jameel H, Chang H-M (2013) BioResources 8:1456–1477

    Google Scholar 

  15. Amadou D, Khalil J, Claude D, Daniel M (2015) BioResources 10:4933–4946

    Google Scholar 

  16. Hatfield R, Vermerris W (2001) Plant Physiol 126:1351–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar A (2020) Anushree, Kumar J, Bhaskar T. J Energy Inst 93:235–271

    CAS  Google Scholar 

  18. Pandey MP, Kim CS (2011) Chem Eng Technol 34:29–41

    CAS  Google Scholar 

  19. Wang H, Tucker M, Ji Y (2013) J Appl Chem 2013:1–9

    Google Scholar 

  20. Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Chem Rev 118:614–678

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu C, Arancon RAD, Labidi J, Luque R (2014) Chem Soc Rev 43:7485–7500

    CAS  PubMed  Google Scholar 

  22. Jan O, Marchand R, Anjos LCA, Seufitelli GVS, Nikolla E, Resende FLP (2015) Energy Fuels 29:1793–1800

    CAS  Google Scholar 

  23. Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, Schneider R, Pleissner D, Rinkel J, Dickschat JS, Venus J, van Duuren JBJH, Wittmann C (2018) Metab Eng 47:279–293

    CAS  PubMed  Google Scholar 

  24. Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT (2015) Energy Environ Sci 8:617–628

    CAS  Google Scholar 

  25. Li J, He Y (2001) and Yoshio I. Polym J 33:336–343

    CAS  Google Scholar 

  26. Park IK, Sun H, Kim SH, Kim Y, Kim GE, Lee Y, Kim T, Choi HR, Suhr J, Nam JD (2019) Sci Rep 9:7033

    PubMed  PubMed Central  Google Scholar 

  27. Upton BM, Kasko AM (2016) Chem Rev 116:2275–2306

    CAS  PubMed  Google Scholar 

  28. Abejón R, Pérez-Acebo H, Clavijo L (2018) Processes 6:98

    Google Scholar 

  29. Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chem Soc Rev 47:852–908

    CAS  PubMed  Google Scholar 

  30. Kumar A, Biswas B, Saini K, Kumar A, Kumar J, Krishna BB, Bhaskar T (2020) Ind Crops Prod 150:112355

    CAS  Google Scholar 

  31. Rößiger B, Unkelbach G, Pufky-Heinrich D (2018). In: Poletto M (ed) Lignin—trends and applications. IntechOpen Limited, London, pp 99–120

    Google Scholar 

  32. Ren T, Qi W, Su R, He Z (2019) ChemCatChem 11:639–654

    Google Scholar 

  33. Otromke M, White RJ, Sauer J (2019) Carbon Resour Convers 2:59–71

    CAS  Google Scholar 

  34. Deepa AK, Dhepe PL (2015) ACS Catal 5:365–379

    CAS  Google Scholar 

  35. Du L, Wang Z, Li S, Song W, Lin W (2013) Int J Chem React Eng 11:135–145

    Google Scholar 

  36. Davis K, Rover M, Brown R, Bai X, Wen Z, Jarboe L (2016) Energies 9:808

    Google Scholar 

  37. Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J (2013) Energy Environ Sci 6:994–1007

    CAS  Google Scholar 

  38. Fernández-Rodríguez J, Erdocia X, Sánchez C, González Alriols M, Labidi J (2017) J Energy Chem 26:622–631

    Google Scholar 

  39. Javier F-R, Xabier E, de Hoyos PL, María GA, Jalel L (2017) Chem Eng Trans 57:133–138

    Google Scholar 

  40. Fache M, Boutevin B, Caillol S (2016) ACS Sustain Chem Eng 4:35–46

    CAS  Google Scholar 

  41. da Costa Lopes AM, Brenner M, Falé P, Roseiro LB, Bogel-Łukasik R (2016) ACS Sustain Chem Eng 4:3357–3367

    Google Scholar 

  42. Vigneault A, Johnson DK, Chornet E (2007) Can J Chem Eng 85:906–916

    CAS  Google Scholar 

  43. Kleinert M, Barth T (2008) Chem Eng Technol 31:736–745

    CAS  Google Scholar 

  44. Feng J, Jiang J, Yang Z, Su Q, Wang K, Xu J (2016) RSC Adv 6:95698–95707

    CAS  Google Scholar 

  45. Zhang R, Maltari R, Guo M, Kontro J, Eronen A, Repo T (2020) Ind Crops Prod 145:112095

    CAS  Google Scholar 

  46. Li X, Xing J, Zhou M, Zhang H, Huang H, Zhang C, Song L, Li X (2014) Catal Commun 56:123–127

    CAS  Google Scholar 

  47. Bomont L, Alda-Onggar M, Fedorov V, Aho A, Peltonen J, Eränen K, Peurla M, Kumar N, Wärnå J, Russo V, Mäki-Arvela P, Grénman H, Lindblad M, Murzin DY (2018) Eur J Inorg Chem 2018:2841–2854

    CAS  Google Scholar 

  48. Bjelić A, Grilc M, Gyergyek S, Kocjan A, Makovec D, Likozar B (2018) Catalysts 8:425

    Google Scholar 

  49. Li A, Shen K, Chen J, Li Z, Li Y (2017) Chem Eng Sci 166:66–76

    CAS  Google Scholar 

  50. Zhang X, Lei H, Zhu L, Wu J, Chen S (2015) Green Chem 17:4736–4747

    CAS  Google Scholar 

  51. Long J, Shu S, Wu Q, Yuan Z, Wang T, Xu Y, Zhang X, Zhang Q, Ma L (2015) Energy Convers Manag 105:570–577

    CAS  Google Scholar 

  52. Rajesh Kumar B, Saravanan S, Niranjan Kumar R, Nishanth B, Rana D, Nagendran A (2016) Fuel 181:630–642

    CAS  Google Scholar 

  53. Herreros JM, Jones A, Sukjit E, Tsolakis A (2014) Appl Energy 116:58–65

    CAS  Google Scholar 

  54. Tišler Z, Vondrová P, Hrachovcová K, Štěpánek K, Velvarská R, Kocík J, Svobodová E (2019) Catalysts 9:1068

    Google Scholar 

  55. Mahajan YS, Kamath RS, Kumbhar PS, Mahajani SM (2008) Ind Eng Chem Res 47:25–33

    CAS  Google Scholar 

  56. Rayborn RL (2000) US Patent 6,111,146

  57. Maillefer E (1989) EP Patent 0334005A2

  58. Yi J, Luo Y, He T, Jiang Z, Li J, Hu C (2016) Catalysts 6:12

    Google Scholar 

  59. Talukdar AK, Bhattacharyya KG, Sivasanker S (1993) Appl Catal A 96:229–239

    CAS  Google Scholar 

  60. Cui X, Surkus AE, Junge K, Topf C, Radnik J, Kreyenschulte C, Beller M (2016) Nat Commun 7:11326

    PubMed  PubMed Central  Google Scholar 

  61. Mortensen PM, Grunwaldt J-D, Jensen PA, Jensen AD (2013) ACS Catal 3:1774–1785

    CAS  Google Scholar 

  62. Betsy KJ, Lazar A, Vinod CP (2018) Nano-struct Nano-objects 13:36–43

    CAS  Google Scholar 

  63. Berenguer A, Sankaranarayanan TM, Gómez G, Moreno I, Coronado JM, Pizarro P, Serrano DP (2016) Green Chem 18:1938–1951

    CAS  Google Scholar 

  64. Wei Z, Li Y, Wang J, Li H, Wang Y (2018) Chin Chem Lett 29:815–818

    CAS  Google Scholar 

  65. Wang X, Zhu S, Wang S, He Y, Liu Y, Wang J, Fan W, Lv Y (2019) RSC Adv 9:3868–3876

    CAS  Google Scholar 

  66. Karakhanov EA, Boronoev MP, Filippova TY, Maksimov AL (2018) Pet Chem 58:407–411

    CAS  Google Scholar 

  67. Deepa AK, Dhepe PL (2014) ChemPlusChem 79:1573–1583

    CAS  Google Scholar 

  68. Lee CR, Yoon JS, Suh Y-W, Choi J-W, Ha J-M, Suh DJ, Park Y-K (2012) Catal Commun 17:54–58

    CAS  Google Scholar 

  69. Chen M, Dong Q, Ni W, Zhao X, Gu Q, Tang G, Li D, Ma W, Hou Z (2017) ChemistrySelect 2:10537–10545

    CAS  Google Scholar 

  70. Schutyser W, Van den Bosch S, Dijkmans J, Turner S, Meledina M, Van Tendeloo G, Debecker DP, Sels BF (2015) Chemsuschem 8:1805–1818

    CAS  PubMed  Google Scholar 

  71. Schutyser W, Van den Bossche G, Raaffels A, Van den Bosch S, Koelewijn S-F, Renders T, Sels BF (2016) ACS Sustain Chem Eng 4:5336–5346

    CAS  Google Scholar 

  72. Shu R, Zhang Q, Xu Y, Long J, Ma L, Wang T, Chen P, Wu Q (2016) RSC Adv 6:5214–5222

    CAS  Google Scholar 

  73. Yang Z, Huang Y-B, Guo Q-X, Fu Y (2013) Chem Commun 49:5328–5330

    CAS  Google Scholar 

  74. Xu Y, Qiu S, Long J, Wang C, Chang J, Tan J, Liu Q, Ma L, Wang T, Zhang Q (2015) RSC Adv 5:91190–91195

    CAS  Google Scholar 

  75. García B, Moreno J, Morales G, Melero JA, Iglesias J (2020) Appl Sci 10:1843

    Google Scholar 

  76. de Castro IBD, Graca I, Rodriguez-Garcia L, Kennema M, Rinaldi R, Meemken F (2018) Catal Sci Technol 8:3107–3114

    Google Scholar 

  77. Yu Y-X, Xu Y, Wang T-J, Ma L-L, Zhang Q, Zhang X-H, Zhang X (2013) J Fuel Chem Technol 41:443–447

    CAS  Google Scholar 

  78. Xu Y, Peng Z, Yu Y, Wang D, Liu J, Zhang Q, Wang C (2020) N J Chem 44:5088–5096

    CAS  Google Scholar 

  79. Song W, He Y, Lai S, Lai W, Yi X, Yang W, Jiang X (2020) Green Chem 22:1662–1670

    CAS  Google Scholar 

  80. Dongil AB, Ghampson IT, García R, Fierro JLG, Escalona N (2016) RSC Adv 6:2611–2623

    CAS  Google Scholar 

  81. Dongil AB, Bachiller-Baeza B, Rodríguez-Ramos I, Fierro JLG, Escalona N (2016) RSC Adv 6:26658–26667

    CAS  Google Scholar 

  82. Lu J, Liu X, Yu G, Lv J, Rong Z, Wang M, Wang Y (2020) Catal Lett 150:837–848

    CAS  Google Scholar 

  83. Liu X, Xu L, Xu G, Jia W, Ma Y, Zhang Y (2016) ACS Catal 6:7611–7620

    CAS  Google Scholar 

  84. Liu X, Jia W, Xu G, Zhang Y, Fu Y (2017) ACS Sustain Chem Eng 5:8594–8601

    CAS  Google Scholar 

  85. McClelland DJ, Galebach PH, Motagamwala AH, Wittrig AM, Karlen SD, Buchanan JS, Dumesic JA, Huber GW (2019) Green Chem 21:2988–3005

    CAS  Google Scholar 

  86. Nakagawa Y, Ishikawa M, Tamura M, Tomishige K (2014) Green Chem 16:2197–2203

    CAS  Google Scholar 

  87. Ishikawa M, Tamura M, Nakagawa Y, Tomishige K (2016) Appl Catal B 182:193–203

    CAS  Google Scholar 

  88. Long W, Liu P, Xiong W, Hao F (2019) Luo Ha. Can J Chem 98:57–65

    Google Scholar 

  89. Chen M-Y, Huang Y-B, Pang H, Liu X-X, Fu Y (2015) Green Chem 17:1710–1717

    CAS  Google Scholar 

  90. Xu G-Y, Guo J-H, Qu Y-C, Zhang Y, Fu Y, Guo Q-X (2016) Green Chem 18:5510–5517

    CAS  Google Scholar 

  91. Han BB, Bao ZK, Liu TZ, Zhou H, Zhuang GL, Zhong X, Deng SW, Wang JG (2017) ChemistrySelect 2:9599–9606

    CAS  Google Scholar 

  92. Dwiatmoko AA, Zhou L, Kim I, Choi J-W, Suh DJ, Ha J-M (2016) Catal Today 265:192–198

    CAS  Google Scholar 

  93. Kannan S, Sreedhar G (2019) US Patent 20190084918A1

  94. Singh D, Dhepe PL (2020) Mol Catal 480:110525

    CAS  Google Scholar 

  95. Alonso DM, Wettstein SG, Dumesic JA (2012) Chem Soc Rev 41:8075–8098

    CAS  PubMed  Google Scholar 

  96. Singh SK (2018) Asian J Org Chem 7:1901–1923

    CAS  Google Scholar 

  97. Zhou MH, Ye J, Liu P, Xu JM, Jiang JC (2017) ACS Sustain Chem Eng 5:8824–8835

    CAS  Google Scholar 

  98. Verma S, Nadagouda MN, Varma RS (2019) Green Chem 21:1253–1257

    CAS  Google Scholar 

  99. Liu M, Zhang J, Zheng L, Fan G, Yang L, Li F (2020) ACS Sustain Chem Eng 8:6075–6089

    CAS  Google Scholar 

  100. Rong Z, Lu J, Yu G, Li J, Wang M, Zhang S (2020) Catal Commun 140:105987

    CAS  Google Scholar 

  101. Chatterjee M, Ishizaka T, Kawanami H (2017) Catal Today 281:402–409

    CAS  Google Scholar 

  102. Guo J, Ma YL, Yu JY, Gao YJ, Ma NX, Wu XY (2019) BMC Chem 13:36

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Si X-G, Zhao Y-P, Song Q-L, Cao J-P, Wang R-Y, Wei X-Y (2020) React Chem Eng 5:886–895

    CAS  Google Scholar 

  104. Garedew M, Young-Farhat D, Bhatia S, Hao P, Jackson JE, Saffron CM (2020) Sustain Energy Fuels 4:1340–1350

    CAS  Google Scholar 

  105. Jiang L, Guo HW, Li CZ, Zhou P, Zhang ZH (2019) Chem Sci 10:4458–4468

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, Sardar Patel Renewable Energy Research Institute (SPRERI), Vallabh Vidyanagar, Anand, Gujarat, India, for his continuous support and constant encouragement. The authors gratefully acknowledge financial support from the Indian Council of Agricultural Research (ICAR), New Delhi, Govt. of India (GoI) and from the Government of Gujarat (GoG), Gujarat, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sreedhar Gundekari or Sanjib Kumar Karmee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundekari, S., Karmee, S.K. Selective Synthesis of Cyclohexanol Intermediates from Lignin-Based Phenolics and Diaryl Ethers using Hydrogen over Supported Metal Catalysts: A Critical Review. Catal Surv Asia 25, 1–26 (2021). https://doi.org/10.1007/s10563-020-09315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09315-3

Keywords

Navigation