Skip to main content
Log in

Uniqueness of entire ground states for the fractional plasma problem

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish uniqueness of vanishing radially decreasing entire solutions, which we call ground states, to some semilinear fractional elliptic equations. In particular, we treat the fractional plasma equation and the supercritical power nonlinearity. As an application, we deduce uniqueness of radial steady states for nonlocal aggregation-diffusion equations of Keller-Segel type, even in the regime that is dominated by aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen, M.: A fractional free boundary problem related to a plasma problem. Commun. Anal. Geom. 27(8), 1665–1696 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ao, W., Chan, H., DelaTorre, A., Fontelos, M.A., del Mar González, M., Wei, J.: On higher-dimensional singularities for the fractional Yamabe problem: a nonlocal Mazzeo-Pacard program. Duke Math. J. 168(17), 3297–3411 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ao, W., Chan, H., González, MdM, Wei, J.: Bound state solutions for the supercritical fractional Schrödinger equation. Nonlinear Anal. 193, 111448 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ao, W., González, M.d.M., Hyder, A., Wei, J.: Removability of singularities and superharmonicity for some fractional Laplacian equations. To appear in Indiana Univ. Math. J.

  5. Bandle, C., Flucher, M.: Harmonic radius and concentration of energy; hyperbolic radius and Liouville’s equations \(\Delta U=e^U\) and \(\Delta U=U^{(n+2)/(n-2)}\). SIAM Rev. 38(2), 191–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations, I existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bian, S., Liu, J.-G.: Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent \(m>0\). Commun. Math. Phys. 323(3), 1017–1070 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezis, H., Oswald, L.: Remarks on sublinear elliptic equations. Nonlinear Anal. 10(1), 55–64 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(1), 23–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L.A., Friedman, A.: Asymptotic estimates for the plasma problem. Duke Math. J. 47(3), 705–742 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Calvez, V., Carrillo, J.A., Hoffmann, F.: Equilibria of homogeneous functionals in the fair-competition regime. Nonlinear Anal. 159, 85–128 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Calvez, V., Carrillo, J. A., Hoffmann, F.: The geometry of diffusing and self-attracting particles in a one-dimensional fair-competition regime. In: Nonlocal and nonlinear diffusions and interactions: new methods and directions, volume 2186 of Lecture Notes in Math., pages 1–71. Springer, Cham, (2017)

  14. Calvez, V., Carrillo, J. A., Hoffmann, F.: Uniqueness of stationary states for singular Keller-Segel type models. arXiv preprint arXiv:1905.07788 (2019)

  15. Canneori, G.M., Mugnai, D.: On fractional plasma problems. Nonlinearity 31(7), 3251–3283 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carrillo, J.A., Hittmeir, S., Volzone, B., Yao, Y.: Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics. Invent. Math. 218(3), 889–977 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carrillo, J.A., Hoffmann, F., Mainini, E., Volzone, B.: Ground states in the diffusion-dominated regime. Calc. Var. Partial Differ. Equ. 57(5), 127 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carrillo, J.A., Chertock, A., Huang, Y.: A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys. 17(1), 233–258 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chan, H., Liu, Y., Wei, J.: Existence and instability of deformed catenoidal solutions for fractional Allen–Cahn equation. arXiv preprint arXiv:1711.03215 (2017)

  20. Chen, W., Li, C., Ou, B.: Qualitative properties of solutions for an integral equation. Discrete Contin. Dyn. Syst. 12(2), 347–354 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59(3), 330–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dávila, J., Dupaigne, L., Wei, J.: On the fractional Lane-Emden equation. Trans. Am. Math. Soc. 369(9), 6087–6104 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Delgadino, M. G., Yan, X., Yao, Y.: Uniqueness and non-uniqueness of steady states of aggregation-diffusion equations. arXiv preprint arXiv:1908.09782

  24. Dyda, B., Kuznetsov, A., Kwaśnicki, M.: Fractional Laplace operator and Meijer G-function. Constr. Approx. 45(3), 427–448 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fall, M.M.: Entire \(s\)-harmonic functions are affine. Proc. Am. Math. Soc. 144(6), 2587–2592 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Felmer, P., Wang, Y.: Radial symmetry of positive solutions to equations involving the fractional Laplacian. Commun. Contemp. Math. 16(1), 1350023, 24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Flucher, M., Wei, J.: Asymptotic shape and location of small cores in elliptic free-boundary problems. Math. Z. 228(4), 683–703 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69(9), 1671–1726 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ghosh, T., Salo, M., Uhlmann, G.: The Calderón problem for the fractional Schrödinger equation. Anal. PDE 13(2), 455–475 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, (2001). Reprint of the 1998 edition

  31. Ikoma, N.: Multiplicity of radial and nonradial solutions to equations with fractional operators. Commun. Pure Appl. Anal. 19(7), 3501–3530 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kesavan, S.: Symmetrization & Applications. Series in Analysis, vol. 3. World Scientific Publishing Co. Pte. Ltd., Hackensack (2006)

    Book  MATH  Google Scholar 

  33. Kinderlehrer, D., Spruck, J.: The shape and smoothness of stable plasma configurations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(1), 131–148 (1978)

    MathSciNet  MATH  Google Scholar 

  34. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence, (2001)

    MATH  Google Scholar 

  35. Lieb, E.H., Yau, H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112(1), 147–174 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ponce, A. C.: Elliptic PDEs, measures and capacities, volume 23 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2016. From the Poisson equations to nonlinear Thomas-Fermi problems

  37. Quittner, P., Souplet, P.: Superlinear parabolic problems, volume 14 of Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser/Springer, Cham, second edition, (2019)

  38. Ros-Oton, X.: Nonlocal elliptic equations in bounded domains: a survey. Publ. Mat. 60(1), 3–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9) 101(3), 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ros-Oton, X., Serra, J.: The Pohozaev identity for the fractional Laplacian. Arch. Ration. Mech. Anal. 213(2), 587–628 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Secchi, S.: On fractional Schrödinger equations in \({{\mathbb{R}}}^N\) without the Ambrosetti-Rabinowitz condition. Topol. Methods Nonlinear Anal. 47(1), 19–41 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Temam, R.: A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma. Arch. Ration. Mech. Anal. 60(1), 51–73 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  44. Temam, R.: Remarks on a free boundary value problem arising in plasma physics. Commun. Partial Differ. Equ. 2(6), 563–585 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to warmly thank Y. Sire, X. Cabré, J. Dolbeault, N. Ikoma and L. Montoro for the fruitful discussions and valuable suggestions. This work has been partially supported by GNAMPA of the Italian INdAM (National Institute of High Mathematics). H.C. has received funding from the European Research Council under the Grant Agreement No 721675. M.d.M. González is supported by the Spanish government grant MTM2017-85757-P. E.M. acknowledges support from the MIUR-PRIN project No 2017TEXA3H and from the INdAM-GNAMPA 2019 project “Trasporto ottimo per dinamiche con interazione”. B.V. acknowledges support from the ‘Programma triennale della Ricerca dell’Università degli Studi di Napoli “Parthenope” - Sostegno alla ricerca individuale 2015-2017” and the INDAM-GNAMPA 2019 project “Trasporto ottimo per dinamiche con interazione”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Volzone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Manuel del Pino.

Appendix A: Riesz potential of the weighted Jacobi polynomials

Appendix A: Riesz potential of the weighted Jacobi polynomials

Here we give a brief derivation of the expressions in (7.3) about the Riesz potential of the weighted Jacobi polynomials \((1-|x|^2)^{-s}P_n^{(-s,N/2-1)} (2|x|^2-1)\) restricted on the unit ball. This relation can be established essentially by reversing the sign of s as for the fractional Laplacian of \((1-|x|^2)^{s}P_n^{(s,N/2-1)} (2|x|^2-1)\) in [24, Theorem 3], so that the Riesz potential can be represented as the inverse Mellin transform

$$\begin{aligned} \frac{(-1)^n2^{-2s}\Gamma (1+n-s)}{n!}\frac{1}{2\pi i}\int _{{\mathscr {C}}} \frac{\Gamma (\tau )\Gamma (\frac{N}{2}-s+n-\tau )}{\Gamma (\frac{N}{2}-\tau )\Gamma (1+n+\tau )}|x|^{-2\tau }d\tau , \end{aligned}$$
(A.1)

where \({\mathscr {C}}\) is a contour from \(\sigma -i\infty \) to \(\sigma +i\infty \) with \(0< \sigma < N/2-s+n\). If \(|x|<1\), the contour integral is reduced to the sum of residues around the poles of \(\Gamma (\tau )\), leading to

$$\begin{aligned}&\frac{(-1)^n2^{-2s}\Gamma (1+n-s)}{n!}\sum _{k=0}^n \frac{(-1)^k}{k!}\frac{\Gamma (N/2-s+n+k)}{\Gamma (N/2+k)\Gamma (1+n-k)}|x|^{2k}\\&\quad = \lambda _n(-1)^n \frac{\Gamma (N/2+n)}{n!\Gamma (N/2)} {}_2F_1(-n,N/2+n-s;N/2;|x|^2) =\lambda _nP_n^{(-s,N/2-1)}(2|x|^2-1) \end{aligned}$$

using the equivalent definition \(P_n^{(a,b)}(z) = (-1)^n \frac{\Gamma (1+b+n)}{n!\Gamma (1+b)} {}_2F_1(-n,1+a+b+n;1+b; (1+z)/2)\) for Jacobi polynomials. For \(|x|>1\), the contour integral (A.1) is evaluated by summing the residues around the poles of \(\Gamma (\frac{N}{2}-s+n-\tau )\), leading to

$$\begin{aligned}&\frac{(-1)^n2^{-2s}\Gamma (1+n-s)}{n!} \sum _{k=0}^\infty \frac{(-1)^k}{k!}\frac{\Gamma (N/2+n+k-s)}{ \Gamma (s-n-k)\Gamma (N/2+2n+1-s+k) }|x|^{-N-2n-2k+2s} \\&\quad = \frac{2^{-2s}\Gamma (1+n-s)\sin \pi s}{n!\pi } |x|^{-N-2n+2s} \sum _{k=0}^\infty \frac{\Gamma (N/2+n+k-s) \Gamma (1+n-s+k)}{ \Gamma (N/2+2n+1-s+k)k! }|x|^{-2k} \\&\quad = \lambda _n \mu _n |x|^{-N-2n+2s}{ }_2F_1\left( 1-s+n, \frac{N}{2}+n-s; 1+2n+\frac{N}{2}-s;|x|^{-2}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, H., González, M.D.M., Huang, Y. et al. Uniqueness of entire ground states for the fractional plasma problem. Calc. Var. 59, 195 (2020). https://doi.org/10.1007/s00526-020-01845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01845-y

Mathematics Subject Classification

Navigation