Skip to main content
Log in

Eruptive history of La Poruña scoria cone, Central Andes, Northern Chile

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

New stratigraphic, lithological and petrographic analyses of La Poruña scoria cone (21° 53′ S-68° 30′ W, Central Andes, northern Chile) allow the reconstruction of the eruptive sequence of this monogenetic cone. Petrographic and lithological characteristics allow us to identify three main lithostratigraphic units at La Poruña scoria cone. The first unit consists of agglutinated lapilli, spatter beds, and clastogenic lavas that are related to the construction of the cone. The other two units are associated with a lava flow field and consist of flow of andesitic composition, which differ both in their degree of weathering and in their development of channel, surface, and internal structures (e.g., levées, ogives, and joints). With these lithostratigraphic analyses, we interpret that the construction of La Poruña occurred during four main eruption phases involving Strombolian, Hawaiian, and transitional eruptive styles. Furthermore, differences in the degree of erosion, alteration, and weathering of the lithostratigraphic units in the lava field of La Poruña suggest that this flow field was formed during two eruptive events. The excellent outcrop conditions and preservation state of the volcanic products of La Poruña allow new stratigraphic insights that advance the wider and more general understanding and the dynamics of this important type of volcanism and the potential hazards of a scoria cone eruption. The polycyclic style of the eruption needs to be included in the hazards assessment of these centers type, especially when the cone is associated with structures that can be reactivated. This process could correspond to a second phase of activity, involving ash fall, bomb, and lava emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alonso RN, Bookhagen B et al (2006) Tectonics, climate, and landscape evolution of the southern central Andes: the Argentine Puna Plateau and adjacent regions between 22 and 30 S. In: Oncken O, Chong G et al (eds) The Andes – Active Subduction Orogeny. Springer, Berlin, pp 265–283

    Google Scholar 

  • Báez W, Carrasco Nuñez G, Giordano G, Viramonte JG, Chiodi A (2016) The polycyclic scoria Cones of the Antofagasta de la Sierra basin, Southern Puna Plateau, Argentina. In: Németh K, Carrasco- Núñez G, Aranda-Gómez JJ y Smith IEM (Eds.) Monogenetic Volcanism. Geological Society of London, Special Publications 446: 311–336

  • Bertin D, Amigo Á (2019) Geología del volcán San Pedro, región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 201: 71 p., 1 mapa escala 1:50.000. Santiago

  • Bertin L, Roa H, Becerril L (2019) Peligros del Campo Volcánico Carrán Los Venados (Map).

  • Bertotto GW, Bjerg EA, Cingolani CA (2006) Hawaiian and Strombolian style monogenetic volcanism in the extra-Andean domain of central-west Argentina. J Volcanol Geotherm Res 158(3-4):430–444

    Google Scholar 

  • Blong RJ (1984) Volcanic Hazards. A sourcebook on the effects of eruptions. Academic Press, Samford Valley

    Google Scholar 

  • Blong RJ (1996) Volcanic hazards risk assessment. In: Monitoring and mitigation of volcano hazards. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80087-0_20

  • Bridges NT, Laity JE, Greeley R, Phoreman J, Eddlemon EE (2004) Insights on rock abrasion and ventifact formation from laboratory and field analog studies with applications to Mars. Planet Space Sci 52(1–3):199–213

  • Cabrera AP, Caffe PJ (2009) The Cerro Morado Andesites: volcanic history and eruptive styles of a mafic volcanic field from northern Puna, Argentina. J S Am Earth Sci 28:113–131

    Google Scholar 

  • Carracedo SM, Sarrionandia F, Arostegui J, Eguiluz L, Gil Ibarguchi JI (2012) The transition of spatter to lava-like body in lava fountain deposits: features and examples from the Cabezo Segura volcano (Calatrava, Spain). J Volcanol Geotherm Res 227-228:1–14. https://doi.org/10.1016/j.jvolgeores.2012.02.016

    Article  Google Scholar 

  • Cas RAF, Wright J (1987) Volcanic succesions, modern and ancient. Chapman and Hall, London

    Google Scholar 

  • Castro A (2015) Petrografía de Rocas Ígneas y Metamórficas. Paraninfo

  • Colman S (1981) Rock-weathering rates as functions of time. Quat Res 15(3):250–264. https://doi.org/10.1016/0033-5894(81)90029.

    Article  Google Scholar 

  • Connor CB, Stamatakos JA, Ferrill DA, Hill BE, Ofoegbu GI, Conway FM, Sagar B, Trapp J (2000) Geologic factors controlling patterns of small-volume basaltic volcanism: application to a volcanic hazards assessment at Yucca Mountain, Nevada. J Geophys Res 105:417–432

    Google Scholar 

  • Corazzato C, Tibaldi A (2006) Fracture control on type, morphology and distribution of parasitic volcanic cones: an example from Mt. Etna, Italy. J Volcanol Geotherm Res 158:177–194

    Google Scholar 

  • Deardorff ND, Cashman KV (2012) Emplacement conditions of the c. 1,600-year bp Collier Cone lava flow, Oregon: a LiDAR investigation. Bull Volcanol 74(9):2051–2066. https://doi.org/10.1007/s00445-012-0650-9

    Article  Google Scholar 

  • DeHoff RT, Rhines FN (1968) Quantitative microscopy. McGraw-Hill, New York, p 422

    Google Scholar 

  • Dietterich HR, Downs DT, Stelten ME, Zahran H (2018) Reconstructing lava flow emplacement histories with rheological and morphologicalanalyses: the Harrat Rahat volcanic field, Kingdom of Saudi Arabia. Bull Volcanol 80(12):85

  • Downs DT, Stelten ME, Champion DE, Dietterich HR, Nawab Z, Zahran H et al (2018) Volcanic history of the northernmost part of the Harrat Rahat volcanic field, Saudi Arabia. Geosphere 14(3):1253–1282. https://doi.org/10.1130/GES01625.1

    Article  Google Scholar 

  • Dungan M, Davidson J (2004) Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: an example from the Chilean Andes. Geology 32:773–777

    Google Scholar 

  • El Difrawy MA, Runge MG, Moufti MR, Cronin SJ, Bebbington M (2013) A first hazard analysis of the Quaternary Harrat Al-Madinah volcanic field, Saudi Arabia. J Volcanol Geotherm Res 267:39–46. https://doi.org/10.1016/j.jvolgeores.2013.09.006

    Article  Google Scholar 

  • Favalli M, Harris AJL, Fornaciai A, Pareschi MT, Mazzarini F (2010) The distal segment of Etna’s 2001 basaltic lava flow. Bull Volcanol 72(1):119–127. https://doi.org/10.1007/s00445-009-0300-z

    Article  Google Scholar 

  • Filipovich R, Báez W, Bustos E, Villagrán A, Chiodi A, Viramonte JG (2019) Estilos eruptivos asociados al volcaismo monogenético máfico de la región de Pasto Ventura, Puna Austral, Argentina. Andean Geol 46(2):300–335. https://doi.org/10.5027/andgeoV46n2-3091

    Article  Google Scholar 

  • Finch RH (1933) Block lava. J Geol 41(7):769–770

    Google Scholar 

  • Godoy B, Wörner G, Kojima S, Aguilera F, Simon K, Hartmann G (2014) Low-pressure evolution of arc magmas in thickened crust: the San Pedro–Linzor volcanic chain, Central Andes, Northern Chile. J S Am Earth Sci 52:24–42. https://doi.org/10.1016/j.jsames.2014.02.004

    Article  Google Scholar 

  • Godoy B, Taussi M, González-Maurel O, Renzulli A, Hernández-Prat L, le Roux P, Menzies A (2019) Linking the mafic volcanism with the magmatic stages during the last 1 Ma in the main volcanic arc of the Altiplano-Puna Volcanic Complex (Central Andes). J S Am Earth Sci 95:102295. https://doi.org/10.1016/j.jsames.2019.102295

    Article  Google Scholar 

  • González RJ, Foshag WF (1947) The Birth of Paricutín. Smithsonian Institute Annual Report 1946.

  • González-Ferrán O (1995) Volcanes de Chile, vol 640. Instituto Geográfico Militar, Santiago

    Google Scholar 

  • González-Maurel O, le Roux P, Godoy B, Troll VR, Deegan FM, Menzies A (2019a) The great escape: petrogenesis of low-silica volcanism of Pliocene to Quaternary age associated with the Altiplano-Puna Volcanic Complex of northern Chile (21° 10′-22° 50′ S). Lithos 346-347:105162

    Google Scholar 

  • González-Maurel O, Godoy B, le Roux P, Rodríguez I, Marín C, Menzies A, Bertin D, Morata D, Vargas M (2019b) Magmatic differentiation at La Poruña scoria Cone, Central Andes, northern Chile: evidence for assimilation during turbulent ascent processes, and genetic links with mafic eruptions at adjacent San Pedro volcano. Lithos 338-339:128–140

    Google Scholar 

  • Gurioli L, Harris A, Colò L, Bernard J, Favalli M, Ripepe M, Andronico D (2013) Classification, landing distribution, and associated flight parameters for a bomb field emplaced during a single major explosion at Stromboli, Italy. Geology 41:559–562. https://doi.org/10.1130/G33967.1

    Article  Google Scholar 

  • Harris AJ, Delle Donne D, Dehn J, Ripepe M, Worden AK (2013) Volcanic plume and bomb field masses from thermal infrared camera imagery. Earth Planet Sci Lett 365:77–85

  • Hartley A, Chong G, Houston J, Mather A (2005) 150 million years of climatic stability: evidence from the Atacama Desert northern Chile. J Geol Soc 162:421–424. https://doi.org/10.1144/0016-764904-071

    Article  Google Scholar 

  • Haschke MR (2002) Evolutionary geochemical patterns of Late Cretaceous to Eocene arc magmatic rocks in North Chile: implications for Archean crystal growth. In: EGU Stephan Mueller Special Publication Series 2: 207-218.

  • Hasenaka T, Carmichael IS (1985) The cinder cones of Michoaca´n–Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. J Volcanol Geotherm Res 25:105–124

    Google Scholar 

  • Houghton BF, Gonnermann HM (2008) Explosive basaltic volcanism: constraints from deposits and models. Chemie der Erde-Geochemistry 68:117–140. https://doi.org/10.1016/j.chemer.2008.04.002

    Article  Google Scholar 

  • Houghton BF, Schmincke HU (1989) Rothenberg scoria cone, East Eifel: a complex strombolian and phreatomagmatic volcano. Bull Volcanol 52:28–48

    Google Scholar 

  • Houghton BF, Bonadonna C, Gregg CE, Johnston DM, Cousins WJ, Cole JW, Del Carlo P (2006) Proximal tephra hazards: recent eruption studies applied to volcanic risk in the Auckland volcanic field, New Zealand. J Volcanol Geotherm Res 155:138–149

    Google Scholar 

  • Karátson D, Telbisz T, Wörner G (2012) Erosion rates and erosion patterns of Neogene to Quaternary stratovolcanoes in the Western Cordillera of the Central Andes: An SRTM DEM based analysis. Geomorphology 139-140:122–135. https://doi.org/10.1016/j.geomorph.2011.10.010

    Article  Google Scholar 

  • Kereszturi G, Németh K (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in Volcanology – New Advances in Understanding Volcanic Systems. InTech, London, pp 3–88

    Google Scholar 

  • Kereszturi G, Csillag G, Németh K, Sebe K, Balogh K, Jáger V (2010) Volcanic architecture, eruption mechanism and landform evolution of a Plio/Pleistocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary. Cent Eur J Geosci 2(3):362–384

    Google Scholar 

  • Kerr PF (1959) Optical minerlogy, 3rd edn. Mc Graw-Hill, New York

    Google Scholar 

  • Kilburn CRJ, Guest JE (1993) Aa lavas of Mount Etna, Sicily. In: Active lavas (UCL, London), p 73–106

  • Lipman P, Banks NG (1987) Aa flow dynamics, Mauna Loa. UGSG Prof Pap 1350:1527–1567

    Google Scholar 

  • Luhr JF, Simkin T, Cuasay M (1993) Parícutin: the volcano born in a Mexican cornfield. US Geoscience Press, Cambridge

    Google Scholar 

  • Macdonald GA (1953) Pahoehoe, aa and block lava. Am J Sci 251:169–191

    Google Scholar 

  • Mamani M, Wörner G, Sempere T (2010) Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracking crustal thickening and magma generation through time and space. Geol Soc Am Bull 122(1/2):162–182

    Google Scholar 

  • Marín C (2016) Petrología del volcán La Poruña, Región de Antofagasta, Chile. Dissertation, B. Sc. Thesis. Universidad Católica del Norte, Antofagasta, Chile

  • Marinovic N, Lahsen A (1984) Carta geológica de Chile, Hoja Calama, Región de Antofagasta, Escala 1:250.000. Servicio Nacional de Geología y Minería, Carta n° 58, Santiago, Chile

  • Maro G, Caffe PJ (2016a) Neogene monogenetic volcanism from the Northern Puna region: products and eruptive styles. En. In: Németh K, Carrasco-Núñez G, Aranda-Gómez JJ, Smith IEM (eds) Monogenetic Volcanism, vol 446. Geological Society of London, Special Publications, London, pp 337–359

    Google Scholar 

  • Maro G, Caffe PJ (2016b) The Cerro Bitiche Andesitic Field: petrological diversity and implications for magmatic evolution of mafic volcanic centers from the northern Puna. Bull Volcanol 78(7)

  • Marsh BD (1989) Magma chambers. Annu Rev Earth Planet Sci 17:439–474

    Google Scholar 

  • Mattioli M, Renzulli A, Menna M, Holm PM (2006) Rapid ascent and contamination of magmas through the thick crust of the CVZ (Andes, Ollagüe region): evidence from a nearly aphyric high-K andesite with skeletal olivines. J Volcanol Geotherm Res 158:87–105

    Google Scholar 

  • Murcia H, Németh K, El-Masry NN, Lindsay JM, Moufti MRH, Wameyo P, Cronin SJ, Smith IEM, Kereszturi G (2015) The Al-Du’aythah volcanic cones, Al-Madinah City: implications for volcanic hazards in northern Harrat Rahat, Kingdom of Saudi Arabia. Bull Volcanol 77(54). https://doi.org/10.1007/s00445-015-0936-9

  • Naranjo JA, Sparks RSJ, Stasiuk MV, Moreno H, Ablay GJ (1992) Morphological, structural and textural variations in the 1988-1990 andesite lava of Lonquimay Volcano. Chile Geol Mag 129(6):657–678

    Google Scholar 

  • Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. In: Cañon-Tapia E, Szakács A (eds) What is a Volcano? vol 470. Geological Society of America, Special Papers, pp 43–66. https://doi.org/10.1130/2010.2470(04)

  • Németh K, Kereszturi G (2015) Monogenetic volcanism: personal views and discussion. Int J Earth Sci 104:2131–2146

    Google Scholar 

  • Németh K, Cronin S, Smith I, Flores J (2012) Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand. Bull Volcanol 74:2121–2137

    Google Scholar 

  • O'Callaghan LJ, Francis PW (1986) Volcanological and petrological evolution of San Pedro volcano, Provincia El Loa, North Chile. J Geol Soc Lond 143:275–286

    Google Scholar 

  • Oguchi CT (2004) A porosity-related diffusion model of weathering-rind development. CATENA 58(1):65–75. https://doi.org/10.1016/j.catena.2003.12.002

    Article  Google Scholar 

  • Papale P, Shroder JF (2014) Volcanic hazards, risks and disasters. Elsevier, Amsterdam, p 532

    Google Scholar 

  • Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134(1-2):77–107

    Google Scholar 

  • Philippi RA (1860): Reise durch die Wüste Atacama auf Befehl der Chilenischen Regierungim Sommer 1853-54 unternommen und beschrieben von Dr. Rudolph Amandus Philippi.

  • Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Granados HD (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin Volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271:359–368. https://doi.org/10.1016/j.epsl.2008.04.026

    Article  Google Scholar 

  • Presta JF, Caffe PJ (2014) Historia evolutiva de los volcanes monogenéticos El Toro (23°05’S-66°42’W), Puna norte, Argentina. Andean Geol 41(1):142–173

    Google Scholar 

  • Ramírez C, Huete C (1981) Carta geológica de Chile, Hoja Ollagüe. Escala 1:250.000. Instituto de Investigaciones Geológicas, Carta n° 40, Santiago, Chile.

  • Ryan WB, Carbotte SM, Coplan JO, O'Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10(3)

  • Salisbury MJ, Jicha BR, de Silva SL, Singer BS, Jiménez NC, Ort MH (2011) 40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province. Geol Soc Am Bull 123(5–6):821–840. https://doi.org/10.1130/B30280.1

    Article  Google Scholar 

  • Sato H, Aramaki S, Kusakabe M, Hirabayashi JI, Sano Y, Nojiri Y, Tchoua F (1990) Geochemical difference of basalts between polygenetic and monogenetic volcanoes in the central part of the Cameroon volcanic line. Geochem J 24(6):357–370

    Google Scholar 

  • Schaller WT, Vlisidis AC (1959) Spontaneous oxidation of a sample of powdered siderite. Am Mineral 44:433–435

    Google Scholar 

  • Sellés D, Gardeweg M (2017) Geología del área Ascotán-Cerro Inacaliri, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 190: 73 p., 1 mapa escala 1:100.000. Santiago.

  • Sigurdsson H (1981) Geologic observations in the crater of Soufriere volcano, St. Vincent. Univ. West Indies Seismic Res. Unit Spec. Publn, 1981/1.

  • Sparks R, Pinkerton H, Hulme G (1976) Classification and formation of lava levee on Mount Etna, Sicily. Geology 4:269–271

    Google Scholar 

  • Stewart R, Németh K (2009) Evidence of multiple scoria cones and cone collapse at Pouerua Volcano, Northland volcanic field, New Zealand. Geological Society of New Zealand Miscellaneous Publication. 128A. 203.

  • Streck MJ (2008) Mineral textures and zoning as evidence for open system processes. Rev Mineral Geochem 69:595–622

    Google Scholar 

  • Sumner JM (1998) Formation of clastogenic Lava flows during fissure eruption and scoria cone collapse: the 1986 eruption of Izu-Oshima Volcano, eastern Japan. Bull Volcanol 60(3):195–212. https://doi.org/10.1007/s004450050227

    Article  Google Scholar 

  • Sumner JM, Blake S, Matela RL, Wolff JA (2005) Spatter. J Volcanol Geotherm Res 142:49–65

    Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes – processes and problems. J Volcanol Geotherm Res 177:857–873. https://doi.org/10.1016/j.jvolgeores.2008.01.050

    Article  Google Scholar 

  • Valentine GA, Krier D, Perry FV, Heiken G (2005) Scoria cone construction mechanisms, LathropWells volcano, southern Nevada, USA. Geology 2005(33):629–632

  • Valentine GA, Krier DJ, Perry FV, Heiken G (2007) Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano. J Volcanol Geotherm Res 161:57–80

    Google Scholar 

  • Vanderkluysen L, Harris AJL, Kelfoun K, Bonadonna C, Ripepe M (2012) Bombs behaving badly: unexpected trajectories and cooling of volcanic projectiles. Bull Volcanol 74:1849–1858. https://doi.org/10.1007/s00445-012-0635-8

    Article  Google Scholar 

  • Vespermann D, Schmincke HU (2000) Scoria Cones and tuff rings. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Academic Press, San Diego, pp 683–694

    Google Scholar 

  • Wörner G, Hammerschmidt K, Henjes-Kunst F, Lezaun J, Wilke H (2000) Geochronology (40Ar/39Ar K-Ar and He-exposure ages) of Cenozoic magmatic rocks from northern Chile (18 22°S): implications for magmatism and tectonic evolution of the central Andes. Rev Geol Chile 27(2):205–240

    Google Scholar 

  • Wörner G, Mamani M, Blum-Oeste M (2018) Magmatism in the Central Andes. Elements 14:237–244

    Google Scholar 

Download references

Acknowledgments

Valuable and constructive comments by Dr. Scott Rowland, an anonymous reviewer and, especially, editor Dr. Hannah Dietrich helped to improve the manuscript, and Dr. Andrew Harris for your important input and comments. We thank Dr. Andrew Menzies for his support in the writing of the text in the initial phases. The authors also thank Andrés Alegre, Alejandro Álvarez, and Gabriel Ureta for their support in the field campaigns.

Funding

This work was funded by Universidad Católica del Norte (Chile) with the support of its student Diploma degree program. O.G.-M. was funded by the CONICYT-PCHA/Doctorado Nacional/2015-21150403 scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés Rodríguez.

Additional information

Editorial responsibility: H. Dietterich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marín, C., Rodríguez, I., Godoy, B. et al. Eruptive history of La Poruña scoria cone, Central Andes, Northern Chile. Bull Volcanol 82, 74 (2020). https://doi.org/10.1007/s00445-020-01410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-01410-7

Keywords

Navigation