Skip to main content

Advertisement

Log in

Local Immunodeficiency: Role of Neutral Viruses

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper analyzes the role of neutral viruses in the phenomenon of local immunodeficiency. We show that, even in the absence of altruistic viruses, neutral viruses can support the existence of persistent viruses and thus local immunodeficiency. However, in all such cases neutral viruses can maintain only bounded (relatively small) concentration of persistent viruses. Moreover, in all such cases the state of local immunodeficiency could only be marginally stable, while it is known that altruistic viruses can maintain stable local immunodeficiency. We also present an absolutely minimal cross-immunoreactivity network where a stable and robust state of local immunodeficiency can be maintained. It is now a challenge to synthetic biology to build such small networks with stable local immunodeficiency. Another important challenge for biology is to understand which types of viruses can play a role of persistent, altruistic and neutral ones and whether a role which a given virus plays depends on the structure (topology) of a given cross-immunoreactivity network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bunimovich L, Shu L (2019) Local immunodeficiency: minimal networks and stability. Math Biosci 310:31–49

    Article  MathSciNet  Google Scholar 

  • Campo DS, Dimitrova Z, Yamasaki L, Skums P, Lau DT, Vaughan G, Forbi JC, Teo C-G, Khudyakov Y (2014) Next-generation sequencing reveals large connected networks of intra-host HCV variants. BMC Genom 15(Suppl 5):S4

    Article  Google Scholar 

  • Chicone C (2006) Ordinary differential equations with applications. Springer, New York

    MATH  Google Scholar 

  • Dahari H, Layden-Almer JE, Kallwitz E, Rebeiro RM, Cotler SJ, Layden TJ, Perelson AS (2009) A mathematical model of hepatitis C virus dynamics in patients with high baseline viral loads or advanced liver disease. Gastroentorology 136(4):1402–1409

    Article  Google Scholar 

  • Domingo-Calap P, Segredo-Otero E, Duran-Moreno M, Sanjuan R (2019) Social evolution of innate immunity evasion in a virus. Nat Microbiol 4:1006–1013

    Article  Google Scholar 

  • Francis T Jr (1960) On the doctrine of original antigenic sin. Proc Am Philos Soc 104(6):572–578

    Google Scholar 

  • Hattori M, Yashioka K, Aiyama T, Iwata K, Terazawa Y, Ishigami M, Yano M, Kakumu S (1998) Broadly reactive antibodies to hypervariable region 1 in hepatitis C virus-infected patient sera: relation to viral loads and response to interferon. Hepatology 27(6):1703–1710

    Article  Google Scholar 

  • Kim JH, Skountzou I, Compans R, Jacob J (2009) Original antigenic sin responses to influenza viruses. J Immunol 183(5):3294–3301

    Article  Google Scholar 

  • Midgley CM, Bajwa-Joseph M, Vasanawathana S, Limpitikul W, Wills B, Flanagan A, Waiyaiya E, Tran HB, Cowper AE, Chotiyarnwon P, Grimes JM, Yoksan S, Malasit P, Simmons CP, Mongkolsapaya J, Screaton GR (2011) An in-depth analysis of original antigenic sin in dengue virus infection. J Virol 85(1):410–421

    Article  Google Scholar 

  • Nowak MA, May RM (1991) Mathematical biology of HIV infections: antigenic variation and diversity threshold. Math Biosci 106(1):1–21

    Article  Google Scholar 

  • Nowak MA, May RM (2000) Virus dynamics: mathematical principles of immunology and virology. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Nowak MA, May RM, Anderson RM (1990) The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease. AIDS 4(11):1095–1103

    Article  Google Scholar 

  • Nowak MA, Anderson RM, Mclean AR, May RM (1991) Antigenic diversity thresholds and the development of aids. Science 254(5034):963–969

    Article  Google Scholar 

  • Pan K (2011) Understanding original antigenic sin in influenza with a dynamical system. PLoS ONE 6(8):e23910

    Article  Google Scholar 

  • Parsons MS, Muller S, Kholer H, Grant MD, Bernard NF (2013) On the benefits of sin:can greater understanding of the 1f7-idiotypic repertoire freeze enhance HIV vaccine development? Hum Vaccines Immunother 9(7):1532–1538

    Article  Google Scholar 

  • Rehermann B, Shin E-C (2005) Private aspects of heterologous immunity. J Exp Med 201(5):667–670

    Article  Google Scholar 

  • Rong L, Dahari H, Ribeiro RM, Perelson AS (2010) Rapid emergence of protease inhibitor resistance in hepatitis C virus. Sci Transl Med 2(30):30ra32

    Article  Google Scholar 

  • Skums P, Bunimovich L, Khudyakov Y (2015) Antigenic cooperation among intrahost HCV variants organized into a complex network of cross-immunoreactivity. Proc Natl Acad Sci USA 112(21):6653–6658

    Article  Google Scholar 

  • Wodarz D (2003) Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses. J Gener Virol 84(Pt 7):1743–1750

    Article  Google Scholar 

  • Yoshioka K, Aiyama T, Okumura A, Takayanagi M, Iwata K, Ishikawa T, Nagai Y, Kakumu S (1997) Humoral immune response to the hypervariable region of hepatitis C virus differs between genotypes 1b and 2a. J Infect Dis 175(3):505–510

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to P. Skums for valuable discussions. This work was partially supported by the NSF Grant CCF-BSF-1664836 and by the NIH Grant 1R01EB025022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longmei Shu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Computation of \(P(\lambda )\) from the Characteristic Polynomial of the Jacobian for Fig. 1

$$\begin{aligned} P(\lambda )= & {} -\lambda \begin{vmatrix}-\lambda&\quad -p\beta x_3&\quad -px_3 \\ \frac{c\alpha r_2}{\alpha r_2+r_3}&\quad \frac{b\alpha r_3}{\alpha r_2+r_3}-b-\lambda&\quad -\frac{b\alpha r_2}{\alpha r_2+r_3} \\ \frac{cr_3}{\alpha r_2+r_3}&\quad -\frac{b\alpha r_3}{\alpha r_2+r_3}&\quad -\frac{br_3}{\alpha r_2+r_3}-\lambda \end{vmatrix}-p\beta x_1\begin{vmatrix} 0&\quad -\lambda&\quad -px_3 \\ c&\quad \frac{c\alpha r_2}{\alpha r_2+r_3}&\quad -\frac{b\alpha r_2}{\alpha r_2+r_3} \\ 0&\quad \frac{cr_3}{\alpha r_2+r_3}&\quad -\frac{br_3}{\alpha r_2+r_3}-\lambda \end{vmatrix}\\= & {} -\lambda \begin{vmatrix} -\lambda&\quad -p\beta x_3&\quad -px_3 \\ \frac{c\alpha r_2}{\alpha r_2+r_3}&\quad \frac{b\alpha r_3}{\alpha r_2+r_3}-b-\lambda&\quad -\frac{b\alpha r_2}{\alpha r_2+r_3} \\ c&\quad -b-\lambda&\quad -b-\lambda \end{vmatrix}+cp\beta x_1\begin{vmatrix} -\lambda&\quad -px_3 \\ \frac{cr_3}{\alpha r_2+r_3}&\quad -\frac{br_3}{\alpha r_2+r_3}-\lambda \end{vmatrix}\\= & {} cp\beta x_1\left( \lambda ^2+\frac{br_3}{\alpha r_2+r_3}\lambda +\frac{pcx_3r_3}{\alpha r_2+r_3}\right) +\lambda ^2\begin{vmatrix} \frac{b\alpha r_3}{\alpha r_2+r_3}-b-\lambda&\quad -\frac{b\alpha r_2}{\alpha r_2+r_3} \\ -b-\lambda&-b-\lambda \end{vmatrix}\\&-\lambda p\beta x_3\begin{vmatrix} \frac{c\alpha r_2}{\alpha r_2+r_3}&\quad -\frac{b\alpha r_2}{\alpha r_2+r_3} \\ c&\quad -b-\lambda \end{vmatrix}+\lambda px_3\begin{vmatrix} \frac{c\alpha r_2}{\alpha r_2+r_3}&\quad \frac{b\alpha r_3}{\alpha r_2+r_3}-b-\lambda \\ c&\quad -b-\lambda \end{vmatrix}\\= & {} bf_1(1-\alpha )\left( \lambda ^2+\frac{br_3}{\alpha r_2+r_3}\lambda +bpr_3\right) \\&+\lambda ^2(-b-\lambda )\left( \frac{b\alpha r_3}{\alpha r_3+r_3}-b-\lambda + \frac{b\alpha r_2}{\alpha r_2+r_3}\right) \\&-\lambda p\beta x_3\left( -\frac{c\alpha r_2}{\alpha r_2+r_3}\lambda - \frac{bc\alpha r_2}{\alpha r_2+r_3}+\frac{bc\alpha r_2}{\alpha r_2+r_3}\right) \\&+\lambda px_3\left( -\frac{c\alpha r_2}{\alpha r_2+r_3}\lambda -\frac{bc\alpha r_2}{\alpha r_2+r_3}-\frac{bc\alpha r_3}{\alpha r_2+r_3}+bc+c\lambda \right) \\= & {} bf_1(1-\alpha )\left( \lambda ^2+\frac{bf_3}{\alpha r_2+r_3}\lambda +bpr_3\right) +\lambda ^2(\lambda +b)\left( \lambda +b-\frac{b\alpha (r_2+r_3)}{\alpha r_2+r_3}\right) \\&+\lambda p\beta x_3\frac{c\alpha r_2}{\alpha r_2+r_3}\lambda \\&+px_3\lambda [\frac{cr_3}{\alpha r_2+r_3}\lambda +\frac{bcr_3(1-\alpha )}{\alpha r_2+r_3}]\\= & {} bf_1(1-\alpha )\left( \lambda ^2+\frac{br_3}{\alpha r_2+r_3}\lambda +bpr_3\right) + \lambda ^2(\lambda +b)\left( \lambda +\frac{br_3(1-\alpha )}{\alpha r_2+r_3}\right) \\&+\lambda ^2p\beta \alpha r_2b+px_3\lambda \left[ \frac{cr_3}{\alpha r_2+r_3}\lambda +\frac{bcr_3 (1-\alpha )}{\alpha r_2+r_3}\right] \\= & {} \alpha bf_1\lambda ^2+bf_1(1-\alpha )\left( \lambda ^2+\frac{br_3}{\alpha r_2+r_3}\lambda +bpr_3\right) \\&+\lambda ^2(\lambda +b)(\lambda +\frac{br_3(1-\alpha )}{\alpha r_2+r_3})+px_3\lambda \left[ \frac{cr_3}{\alpha r_2+r_3}\lambda +\frac{bcr_3(1-\alpha )}{\alpha r_2+r_3}\right] . \end{aligned}$$

Appendix B. Computation of the Characteristic Polynomial of the Jacobian for Fig. 3

Let \(\lambda _1=\frac{cx_1}{\alpha r_2}-b\),

$$\begin{aligned} \det (J-\lambda I)= & {} \det \begin{pmatrix}-\lambda &{}\quad 0 &{}\quad -px_1 &{}\quad -p\beta x_1\\ 0 &{}\quad -\lambda &{}\quad 0 &{}\quad -px_2\\ 0 &{}\quad 0 &{}\quad \lambda _1-\lambda &{}\quad 0\\ c &{}\quad c &{}\quad -\frac{cx_1}{\alpha r_2} &{}\quad -b-\lambda \end{pmatrix}=(\lambda _1-\lambda )\det \begin{pmatrix}-\lambda &{}\quad 0 &{}\quad -p\beta x_1 \\ 0 &{}\quad -\lambda &{}\quad -px_2 \\ c &{}\quad c &{}\quad -b-\lambda \end{pmatrix}\\= & {} (\lambda -\lambda _1)\left[ \lambda (\lambda ^2+b\lambda +cpx_2)+p\beta x_1c\lambda \right] =\lambda (\lambda -\lambda _1)\left[ \lambda ^2+b\lambda +cp(x_2+\beta x_1)\right] \\= & {} \lambda (\lambda -\lambda _1)P(\lambda ).\end{aligned}$$

Appendix C. Computation of the Characteristic Polynomial of the Jacobian for Fig. 4

Let \(\lambda _1=\frac{cx_1}{\alpha (r_2+r_3)}-b<\frac{b}{\alpha }-b\), then

By expanding along the fourth row, we get

$$\begin{aligned}|J-\lambda I|=(\lambda _1-\lambda )\begin{vmatrix} -\lambda&\quad 0&\quad 0&\quad -p\beta x_1&\quad -p\beta x_1 \\ 0&\quad -\lambda&\quad 0&\quad -px_2&\quad 0 \\ 0&\quad 0&\quad -\lambda&\quad 0&\quad -px_3 \\ \frac{cr_2}{r_2+r_3}&\quad c&\quad 0&\quad \frac{cx_1r_3}{(r_2+r_3)^2}-b-\lambda&\quad -\frac{cx_1r_2}{(r_2+r_3)^2} \\ c&\quad c&\quad c&\quad -b-\lambda&\quad -b-\lambda \end{vmatrix}. \end{aligned}$$

Expanding now along the second row, we obtain

$$\begin{aligned}|J-\lambda I|=(\lambda -\lambda _1)[\lambda D_1(\lambda )+px_2 D_2(\lambda )],\end{aligned}$$

where

$$\begin{aligned}&D_1(\lambda )=\begin{vmatrix} -\lambda&\quad 0&\quad -p\beta x_1&\quad -p\beta x_1 \\ 0&\quad -\lambda&\quad 0&\quad -px_3 \\ \frac{cr_2}{r_2+r_3}&\quad 0&\quad \frac{cx_1r_3}{(r_2+r_3)^2}-b-\lambda&\quad -\frac{cx_1r_2}{(r_2+r_3)^2} \\ c&\quad c&\quad -b-\lambda&\quad -b-\lambda \end{vmatrix}\\&\quad =-\lambda \begin{vmatrix}-\lambda&\quad -p\beta x_1&\quad -p\beta x_1\\ \frac{cr_2}{r_2+r_3}&\quad \frac{cx_1r_3}{(r_2+r_3)^2}-b-\lambda&\quad -\frac{cx_1r_2}{(r_2+r_3)^2}\\ c&\quad -b-\lambda&\quad -b-\lambda \end{vmatrix}-px_3\begin{vmatrix}-\lambda&\quad 0&\quad -p\beta x_1\\ \frac{cr_2}{r_2+r_3}&\quad 0&\quad \frac{cx_1r_3}{(r_2+r_3)^2}-b-\lambda \\ c&\quad c&\quad -b-\lambda \end{vmatrix}\\&\quad =-\lambda \begin{vmatrix}-\lambda&\quad 0&\quad -p\beta x_1\\ \frac{cr_2}{r_2+r_3}&\quad \frac{cx_1}{r_2+r_3}-b-\lambda&\quad -\frac{cx_1r_2}{(r_2+r_3)^2}\\ c&\quad 0&\quad -b-\lambda \end{vmatrix}+cpx_3\left[ \lambda ^2+\left( b-\frac{cx_1r_3}{(r_2+r_3)^2}\right) \lambda +cp\beta x_1\frac{r_2}{r_2+r_3}\right] \\&\quad =\lambda (\lambda +b-\frac{cx_1}{r_2+r_3}) \left[ \lambda ^2+b\lambda +cp\beta x_1\right] \\&\qquad +cpx_3\left[ \lambda ^2+(b-\frac{cx_1r_3}{(r_2+r_3)^2})\lambda +cp \beta x_1\frac{r_2}{r_2+r_3}\right] ,\\&\quad D_2(\lambda )=\begin{vmatrix}-\lambda&\quad 0&\quad 0&\quad -p\beta x_1 \\ 0&\quad 0&\quad -\lambda&\quad -px_3 \\ \frac{cr_2}{r_2+r_3}&\quad c&\quad 0&\quad -\frac{cx_1r_2}{(r_2+r_3)^2} \\ c&\quad c&\quad c&\quad -b-\lambda \end{vmatrix}=c\lambda \left[ \lambda ^2+(b-\frac{cx_1r_2}{(r_2+r_3)^2})\lambda +cpx_3\right] \\&\qquad +cp\beta x_1\lambda \frac{cr_3}{r_2+r_3}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunimovich, L., Shu, L. Local Immunodeficiency: Role of Neutral Viruses. Bull Math Biol 82, 140 (2020). https://doi.org/10.1007/s11538-020-00813-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00813-z

Keywords

Navigation